MIMO Antennas: Design Approaches, Techniques and Applications
Abstract
:1. Introduction
2. MIMO Antenna Design Approaches
2.1. Envelope Correlation Coefficient (ECC)
2.2. Diversity Gain (DG)
2.3. Channel Capacity Loss (CCL)
2.4. Mean Effective Gain (MEG)
2.5. Total Active Reflection Coefficient (TARC)
3. Ultra-Wideband (UWB) MIMO Antenna Designs
4. Dual-Band MIMO Antenna Designs
5. Circularly Polarized MIMO Antenna Design Approaches
6. MIMO Antennas in Indoor Environment
7. MIMO Characteristics for 6G Technology
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tao, J.; Feng, Q. Compact ultra-wideband MIMO antenna with half-slot structure. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 792–795. [Google Scholar] [CrossRef]
- Xu, Y.; Dong, Y.; Wen, S.; Wang, H. Vertically polarized quasi-Yagi MIMO antenna for 5G N78 band application. IEEE Access 2021, 9, 7836–7844. [Google Scholar] [CrossRef]
- Sakli, H.; Abdelhamid, C.; Essid, C.; Sakli, N. Metamaterial-based antenna performance enhancement for MIMO system applications. IEEE Access 2021, 9, 38546–38556. [Google Scholar] [CrossRef]
- Garg, P.; Jain, P. Isolation improvement of MIMO antenna using a novel flower shaped metamaterial absorber at 5.5GHz WiMAX band. IEEE Trans. Circuits Syst. 2020, 67, 675–679. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, L.; Cai, Y.; Zheng, S.; Yin, Y. A meta-surface antenna array decoupling (MAAD) method for mutual coupling reduction in a MIMO antenna system. Sci. Rep. 2018, 8, 3152–3159. [Google Scholar] [CrossRef] [Green Version]
- Xue, C.D.; Zhang, X.Y.; Cao, Y.F.; Hou, Z.; Ding, C.F. MIMO antenna using hybrid electric and magnetic coupling for isolation enhancement. IEEE Trans. Antennas Propag. 2017, 65, 5162–5170. [Google Scholar] [CrossRef]
- Yang, C.; Kim, J.; Kim, H.; Wee, J.; Kim, B.; Jung, C. Quad-band antenna with high isolation MIMO and broadband SCS for broadcasting and telecommunication services. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 584–587. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Roy, B. Investigations on an extremely compact MIMO antenna with enhanced isolation and bandwidth. Microw. Opt. Technol. Lett. 2020, 62, 845–851. [Google Scholar] [CrossRef]
- Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T.L. Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 2014, 52, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Pei, T.; Zhu, L.; Wang, J.; Wu, W. A low-profile decoupling structure for mutual coupling suppression in MIMO patch antenna. IEEE Trans. Antennas Propag. 2021, 69, 6145–6153. [Google Scholar] [CrossRef]
- Tiwari, R.N.; Singh, P.; Kumar, P.; Kanaujia, B.K. High isolation 4-port UWB MIMO antenna with novel decoupling structure for high speed and 5G communication. In Proceedings of the 2022 International Conference on Electromagnetics in Advanced Applications (ICEAA), Cape Town, South Africa, 5–9 September 2022; pp. 336–339. [Google Scholar]
- Ghalib, A.; Sharawi, M.S. TCM analysis of defected ground structures for MIMO antenna designs in mobile terminals. IEEE Access 2017, 5, 19680–19692. [Google Scholar] [CrossRef]
- Pan, B.C.; Cui, T.J. Broadband decoupling network for dual-band microstrip patch antennas. IEEE Trans. Antennas Propag. 2017, 65, 5595–5598. [Google Scholar] [CrossRef]
- Khalid, M.; Iffat Naqvi, S.; Hussain, N.; Rahman, M.; Mirjavadi, S.S.; Khan, M.J.; Amin, Y. 4-port MIMO antenna with defected ground structure for 5G millimeter wave applications. Electronics 2020, 9, 71. [Google Scholar] [CrossRef] [Green Version]
- Niu, Z.; Zhang, H.; Chen, Q.; Zhong, T. Isolation enhancement for 1 × 3 closely spaced E-plane patch antenna array using defect ground structure and metal-vias. IEEE Access 2019, 7, 119375–119383. [Google Scholar] [CrossRef]
- Federal Communications Commission. First Report and Order Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems FCC 02-48; Federal Communications Commission: Washington, DC, USA, 2002.
- Wong, K.L.; Chen, Y.H.; Li, W.Y. Decoupled compact ultra-wideband MIMO antennas covering 3300~6000 MHz for the fifth-generation mobile and 5GHz-WLAN operations in the future smartphone. Microw. Opt. Technol. Lett. 2018, 60, 2345–2351. [Google Scholar]
- Jehangir, S.S.; Sharawi, M.S. A miniaturized UWB biplanar Yagi-like MIMO antenna system. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2320–2323. [Google Scholar] [CrossRef]
- Chen, A.; Zhang, J.; Zhao, L.; Yin, Y. A dual-feed MIMO antenna pair with one shared radiator and two isolated ports for fifth generation mobile communication band. Int. J. RF Microw. Comput. Aided Eng. 2017, 27, e21146. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, L.; Cai, Y.M. A MIMO antenna decoupling network composed of inverters and coupled split ring resonators. Prog. Electromagnet. Res. C 2017, 79, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Pandit, S.; Mohan, A.; Ray, P. A compact four-element MIMO antenna for WLAN applications. Microw. Opt. Technol. Lett. 2018, 60, 289–295. [Google Scholar] [CrossRef]
- Tiwari, R.N.; Singh, P.; Kanaujia, B.K.; Srivastava, K. Neutralization technique based two and four port high isolation MIMO antennas for UWB communication. Int. J. Electron. Commun. (AEU) 2019, 110, 152828. [Google Scholar] [CrossRef]
- Tang, X.; Yao, Z.; Li, Y.; Zong, W.; Liu, G.; Shan, F. A high performance UWB MIMO antenna with defected ground structure and U-shape branches. Int. J. RF Microw. Comput. Aided Eng. 2020, 31, e22270. [Google Scholar] [CrossRef]
- Tiwari, R.N.; Singh, P.; Kanaujia, B.K.; Kumar, P. UWB MIMO antenna with decoupling strip for 5G applications. In Proceedings of the 2021 International Applied Computational Electromagnetics Society Symposium (ACES), Hamilton, ON, Canada, 1–5 August 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Katie, M.O.; Jamlos, M.F.; Alqadami, A.S.M.; Jamlos, M.A. Isolation enhancement of compact dual-wideband MIMO antenna using Flag-shaped stub. Microw. Opt. Technol. Lett. 2017, 59, 1028–1032. [Google Scholar] [CrossRef]
- Tiwari, R.N.; Singh, P.; Kanaujia, B.K. A compact UWB MIMO antenna with neutralization line for WLAN/ISM/mobile applications. Int. J. RF Microw. Comput. Aided Eng. 2019, 29, e21907. [Google Scholar] [CrossRef]
- Wang, E.; Wang, W.; Tan, X.; Wu, Y.; Gao, J.; Liu, Y. A UWB slot antenna using defected ground structure for high isolation. Int. J. RF Microw. Comput. Aided Eng. 2020, 30, e22155. [Google Scholar] [CrossRef]
- Tebache, S.; Belouchrani, A.; Ghanem, F.; Mansoul, A. Novel reliable and practical decoupling mechanism for strongly coupled antenna array. IEEE Trans. Antennas Propag. 2019, 67, 5892–5899. [Google Scholar] [CrossRef]
- Barani, I.R.R.; Wong, K.L.; Zhang, Y.X.; Li, W.Y. Low-profile wideband conjoined open-slot antennas fed by grounded coplanar waveguides for 4 × 4 5G MIMO operation. IEEE Trans. Antennas Propag. 2020, 68, 2646–2657. [Google Scholar] [CrossRef]
- Saadh, A.W.M.; Ramaswamy, P.; Ali, T. A CPW fed two and four element antenna with reduced mutual coupling between the antenna elements for wireless applications. Appl. Phys. A 2021, 127, 88. [Google Scholar] [CrossRef]
- Ali, W.A.E.; Ibrahim, A.A. A compact double-sided MIMO antenna with an improved isolation for UWB applications. Int. J. Electron. Commun. (AEU) 2017, 82, 7–13. [Google Scholar] [CrossRef]
- Roshna, T.K.; Deepak, U.; Mohananl, P. Compact UWB MIMO antenna for tridirectional pattern diversity characteristics. IET Microw. Antennas Propag. 2017, 11, 2059–2065. [Google Scholar] [CrossRef]
- Mendez, J.A.T.; Aguilar, H.J.; Merino, A.R.; Toledo, L.A.V.; Villanueva, R.G. Four ports wideband drop-shaped slot antenna for MIMO applications. J. Electromagnet. Waves Applicat. 2020, 34, 1159–1179. [Google Scholar] [CrossRef]
- Ahmed, B.T.; Rodriguez, I.F. Compact high isolation UWB MIMO antennas. Wirel. Netw. 2022, 28, 1977–1999. [Google Scholar] [CrossRef]
- Wang, L.; Du, Z.; Yang, H.; Ma, R.; Zhao, Y.; Cui, X.; Xi, X. Compact UWB MIMO antenna with high isolation using fence-type decoupling structure. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1641–1645. [Google Scholar] [CrossRef]
- Wang, M.; Nan, J.; Liu, J. High-isolation UWB MIMO antenna with multiple X-shaped stubs loaded between ground planes. Int. J. Antennas Propag. 2021, 2021, 1155471. [Google Scholar] [CrossRef]
- Addepalli, T.; Anitha, V.R. A very compact and closely spaced circular shaped UWB MIMO antenna with improved isolation. Int. J. Electron. Commun. (AEU) 2020, 114, 153016. [Google Scholar] [CrossRef]
- Sharma, M.; Dhasarathan, V.; Patel, S.K.; Nguyen, T.K. An ultra-compact four-port 4 × 4 superwideband MIMO antenna including mitigation of dual notched bands characteristics designed for wireless network applications. Int. J. Electron. Commun. (AEU) 2020, 123, 153332. [Google Scholar] [CrossRef]
- Sharma, A.; Sarkar, A.; Biswas, A.; Akhtar, M.J. A-shaped wideband dielectric resonator antenna for wireless communication systems and its MIMO implementation. Int. J. RF Microw. Comput. Eng. 2018, 28, e21402. [Google Scholar] [CrossRef]
- Sharma, A.; Biswas, A. Wideband multiple-input-multiple-output dielectric resonator antenna. IET Microw. Antenna Propag. 2017, 11, 496–502. [Google Scholar] [CrossRef]
- Gotra, S.; Varshney, G.; Pandey, V.S.; Yaduvanshi, R.S. Super-wideband multi-input-multi-output dielectric resonator antenna. IET Microw. Antennas Propag. 2020, 14, 21–27. [Google Scholar] [CrossRef]
- Tiwari, R.N.; Singh, P.; Kanaujia, B.K.; Kumar, S.; Gupta, S.K. A low profile dual band MIMO antenna for LTE/Bluetooth /Wi-Fi/WLAN applications. J. Electromagnet. Wave Applicat. 2020, 34, 1239–1253. [Google Scholar] [CrossRef]
- Liu, P.; Sun, D.; Wang, P.; Gao, P. Design of a dual-band MIMO antenna with high isolation for WLAN applications. Prog. Electromagnet. Res. Lett. 2018, 74, 23–30. [Google Scholar] [CrossRef]
- Nirmal, P.C.; Nandgaonkar, A.; Nalbalwar, S.; Gupta, R.K. A compact dual-band MIMO antenna with improved isolation for WI-MAX and WLAN applications. Prog. Electromagnet. Res. M 2018, 68, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yang, L.; Liu, Y.; Ren, J.; Wang, J.; Li, X. Dual-band planar MIMO antenna for WLAN application. Microw. Opt. Technol. Lett. 2015, 57, 2257–2262. [Google Scholar] [CrossRef]
- Wu, Y.T.; Chu, Q.X. Dual-band multiple input multiple output antenna with slitted ground. IET Microw. Antennas Propag. 2014, 8, 1007–1013. [Google Scholar] [CrossRef]
- Islam, S.K.N.; Das, S. Dual-band CPW fed MIMO antenna with polarization diversity and improved gain. Int. J. RF Microw. Comput. Aided Eng. 2020, 30, e22128. [Google Scholar] [CrossRef]
- Tiwari, R.N.; Singh, P.; Panday, S.; Anand, R.; Singh, D.K.; Kanaujia, B.K. Swastika shaped slot embedded two port dual frequency band MIMO antenna for wireless applications. Analog Integra. Circuits Signal Process. 2021, 109, 103–113. [Google Scholar] [CrossRef]
- Sharma, P.; Tiwari, R.N.; Singh, P.; Kanaujia, B.K. Dual-band trident shaped MIMO antenna with novel ground plane for 5G applications. Int. J. Electron. Commun. (AEU) 2022, 155, 154364. [Google Scholar] [CrossRef]
- Luo, X.; Yuan, J.; Chen, K. Compact and low profile MIMO antenna for dual-WLAN-band access points. Prog. Electromagnet. Res. Lett. 2017, 67, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.Y.; Li, J.Y.; Zhao, L.; Guo, L.X. A dual-band inverted-F MIMO antenna with enhanced isolation for WLAN applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2270–2273. [Google Scholar] [CrossRef]
- Yang, R.; Xi, S.; Cai, Q.; Chen, Z.; Wang, X.; Liu, G. A compact planar dual-band multiple-input and multiple-output antenna with high isolation for 5G and 4G applications. Micromachines 2021, 12, 544. [Google Scholar] [CrossRef]
- Zhao, N.; Tian, W.P. CPW-fed dual-band MIMO antenna with common radiating element. Prog. Electromagnet. Res. Lett. 2016, 62, 71–75. [Google Scholar] [CrossRef]
- Yang, M.; Zhou, J. A compact pattern diversity MIMO antenna with enhanced bandwidth and high-isolation characteristics for WLAN/5G/WiFi applications. Microw. Opt. Technol. Lett. 2020, 62, 2353–2364. [Google Scholar] [CrossRef]
- Sarkar, D.; Srivastava, K.V. Compact four-element SRR-loaded dual-band MIMO antenna for WLAN/WiMAX/WiFi/4G-LTE and 5G applications. Electron. Lett. 2017, 53, 1623–1624. [Google Scholar] [CrossRef]
- Ding, K.; Gao, C.; Qu, D.; Yin, Q. Compact broadband MIMO antenna with parasitic strip. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2349–2353. [Google Scholar] [CrossRef]
- Tiwari, R.N.; Singh, P.; Kanaujia, B.K.; Kumar, P. Dual band 4-port MIMO antenna for Bluetooth/5G applications. In Proceedings of the 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), Singapore, 4–10 December 2021; pp. 1941–1942. [Google Scholar]
- Shen, X.; Liu, F.; Zhao, L.; Huang, G.L.; Shi, X.; Huang, Q.; Chen, A. Decoupling of two strongly coupled dual-band antennas with reactively loaded dummy element array. IEEE Access 2019, 7, 154672–154682. [Google Scholar] [CrossRef]
- Kumar, A.; Ansari, A.Q.; Kanaujia, B.K.; Kishor, J. A novel ITI-shaped isolation structure placed between two-port CPW-fed dual-band MIMO antenna for high isolation. Int. J. Electron. Commun. (AEU) 2019, 104, 35–43. [Google Scholar] [CrossRef]
- Desai, A.; Upadhyaya, T.; Palandoken, M.; Gocen, C. Dual band transparent antenna for wireless MIMO system applications. Microw. Opt. Technol. Lett. 2019, 61, 1845–1856. [Google Scholar] [CrossRef]
- Peng, H.; Zhi, R.; Yang, Q.; Cai, J.; Wan, Y.; Liu, G. Design of a MIMO antenna with high gain and enhanced isolation for WLAN applications. Electronics 2021, 10, 1659. [Google Scholar] [CrossRef]
- Maturi, T.; Harikrishna, B. Electronic band-gap integrated low mutual coupling dual band MIMO antenna. Int. J. Electron. 2020, 107, 1166–1176. [Google Scholar] [CrossRef]
- Abdulkawi, W.M.; Malik, W.A.; Rehman, S.U.; Aziz, A.; Sheta, A.F.A.; Alkanhal, M.A. Design of a compact dual-band MIMO antenna system with high-diversity gain performance in both frequency bands. Micromachines 2021, 12, 383. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Y.; Wang, W.; Yang, Y. Isolation enhancement in dual band monopole antenna for 5G applications. IEEE Trans. Circuits Syst. II Exp Briefs 2021, 68, 1867–1871. [Google Scholar] [CrossRef]
- Soltani, S.; Lotfi, P.; Murch, R.D. A dual-band multiport MIMO slot antenna for WLAN applications. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 529–532. [Google Scholar] [CrossRef]
- Nandi, S.; Mohan, A. A compact dual-band MIMO slot antenna for WLAN applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2457–2460. [Google Scholar] [CrossRef]
- Khan, A.A.; Jamaluddin, M.H.; Aqeel, S.; Nasir, J.; Kazim, J.U.R.; Owais, O. Dual-band MIMO dielectric resonator antenna for WiMAX/WLAN applications. IET Microw. Antennas Propag. 2017, 11, 113–120. [Google Scholar] [CrossRef]
- Kumar, A.; Agrawal, T. High performance circularly polarized MIMO antenna with polarization independent metamaterial. Wirel. Pers. Commun. 2021, 16, 3205–3216. [Google Scholar] [CrossRef]
- Malviya, L.; Panigrahi, R.K.; Kartikeyan, M.V. Circularly polarized 2 × 2 MIMO antenna for WLAN applications. Prog. Electromagnet. Res. C 2016, 66, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Hussine, U.U.; Huang, Y.; Song, C. A new circularly polarized antenna for GNSS applications. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017; pp. 1954–1956. [Google Scholar]
- Tiwari, R.N.; Singh, P.; Kanaujia, B.K.; Kumar, P. Compact circularly polarized MIMO printed antenna with novel ground structure for wideband applications. Int. J. RF Microw. Comput. Aided Eng. 2021, 31, e22737. [Google Scholar] [CrossRef]
- Jaiswal, R.K.; Kumari, K.; Sim, C.Y.D.; Srivastava, K.V. Three-port circularly polarized MIMO antenna for WLAN application with pattern and polarization diversity. Microw Opt. Technol. Lett. 2021, 63, 1927–1934. [Google Scholar] [CrossRef]
- Tran, H.H.; Hussain, H.; Le, T.T. Low-profile wideband circularly polarized MIMO antenna with polarization diversity for WLAN applications. Int. J. Electron. Commun. (AEU) 2019, 108, 172–180. [Google Scholar] [CrossRef]
- Chen, H.N.; Song, J.M.; Park, J.D. A compact circularly polarized MIMO dielectric resonator antenna over electromagnetic band-gap surface for 5G applications. IEEE Access 2019, 7, 140889–140898. [Google Scholar] [CrossRef]
- Sahu, N.K.; Das, G.; Gangwar, R.K. Dual polarized triple-band dielectric resonator based hybrid MIMO antenna for WLAN/WiMAX applications. Microw. Opt. Technol. Lett. 2018, 60, 1033–1041. [Google Scholar] [CrossRef]
- Dicandia, F.A.; Genovesi, S.; Monorchio, A. Analysis of the performance enhancement of MIMO systems employing circular polarization. IEEE Trans. Antenna Propag. 2017, 65, 4824–4835. [Google Scholar] [CrossRef]
- Sahu, N.K.; Das, G.; Gangwar, R.K. L-shaped dielectric resonator based circularly polarized multi-input-multi-output (MIMO) antenna for wireless local area network (WLAN) applications. Int. J. RF Microw. Comput. Aided Eng. 2018, 28, e21426. [Google Scholar] [CrossRef]
- Iqbal, J.; Illahi, U.; Sulaiman, M.I.; Alam, M.M.; Suud, M.M.; Yasin, M.N.M. Mutual coupling reduction using hybrid technique in wideband circularly polarized MIMO antenna for WiMAX applications. IEEE Access 2019, 7, 40951–40958. [Google Scholar] [CrossRef]
- Varshney, G.; Singh, R.; Pandey, V.S.; Yaduvanshi, R.S. Circularly polarized two-port MIMO dielectric resonator antenna. Prog. Electromagnet. Res. M 2020, 91, 19–28. [Google Scholar] [CrossRef]
- Varshney, G.; Gotra, S.; Chaturvedi, S.; Pandey, V.S.; Yaduvanshi, R.S. Compact four-port MIMO dielectric resonator antenna with pattern diversity. IET Microw. Antennas Propag. 2019, 13, 2193–2198. [Google Scholar] [CrossRef]
- Das, G.; Sharma, A.; Gangwar, R.K. Dielectric resonator based circularly polarized MIMO antenna with polarization diversity. Microw. Opt. Technol. Lett. 2018, 60, 685–693. [Google Scholar] [CrossRef]
- Khan, I.; Wu, Q.; Ullah, I.; Rahman, S.U.; Ullah, H.; Zhang, K. Designed circularly polarized two-port microstrip MIMO antenna for WLAN applications. Appl. Sci. 2022, 12, 1068. [Google Scholar] [CrossRef]
- Bhadade, R.S.; Mahajan, S.P. Circularly polarized 4 × 4 MIMO antenna for WLAN applications. Electromagnetics 2019, 39, 325–342. [Google Scholar] [CrossRef]
- Kumar, S.; Lee, G.H.; Kim, D.H.; Choi, H.C.; Kim, K.W. Dual circularly polarized planar four-port MIMO antenna with wide axial-ratio bandwidth. Sensors 2020, 20, 5610. [Google Scholar] [CrossRef]
- Jamal, M.Y.; Li, M.; Yeung, K.L. Isolation enhancement of closely packed dual circularly polarized MIMO antenna using hybrid technique. IEEE Access 2020, 8, 11241–11247. [Google Scholar] [CrossRef]
- Dwivedi, A.K.; Sharma, A.; Singh, A.K.; Singh, V. Design of dual band four port circularly polarized MIMO DRA for WLAN/WiMAX applications. J. Electromagnet. Waves Applicat. 2020, 34, 1990–2009. [Google Scholar] [CrossRef]
- Dwivedi, A.K.; Sharma, A.; Singh, A.K.; Singh, V. Circularly polarized two port MIMO cylindrical DRA for 5G applications. In Proceedings of the 2020 International Conference on UK-China Emerging Technologies (UCET), Glasgow, UK, 20–21 August 2020; pp. 1–4. [Google Scholar]
- Thi, P.K.; Tran, H.H.; Le, T.T. Circularly polarized MIMO antenna utilizing parasitic elements for simultaneous improvements in isolation, bandwidth and gain. Int. J. Electron. Commun. (AEU) 2021, 135, 153727. [Google Scholar]
- Adam, I.; Yasin, M.N.M.; Ramli, N.; Jusoh, M.; Rahim, H.A.; Latef, T.B.A.; Izam, T.F.T.M.N.; Sabapathy, T. Mutual coupling reduction of a wideband circularly polarized microstrip MIMO antenna. IEEE Access 2019, 7, 97838–97845. [Google Scholar] [CrossRef]
- Dwivedi, A.K.; Sharma, A.; Pandey, A.K.; Singh, V. Two port circularly polarized MIMO antenna design and investigation for 5G communication systems. Wirel. Pers. Commun. 2021, 120, 2085–2099. [Google Scholar] [CrossRef]
- Iqbal, A.; Smida, A.; Alazemi, A.J.; Waly, M.I.; Mallat, N.K.; Kim, S. Wideband circularly polarized MIMO antenna for high data wearable biotelemetric devices. IEEE Access 2020, 8, 17935–17944. [Google Scholar] [CrossRef]
- Cho, S.; Hong, I. Reduction of wireless signals in indoor environments by using an active frequency selective wall based on spectrum sensing. Int. J. Commun. Syst. 2017, 30, e3370. [Google Scholar] [CrossRef]
- Yin, W.; Zhang, H.; Zhong, T.; Min, X. A novel compact dual-band frequency selective surface for GSM shielding by utilizing a 2.5-dimensional structure. IEEE Trans. Electromag. Compat. 2018, 60, 2057–2060. [Google Scholar] [CrossRef]
- Rodriguez, J.V.; Gustafsson, M.; Pardo, J.M.M.G.; Llacer, L.J.; Rodriguez, I.R. Frequency-selective wallpaper for indoor interference reduction and MIMO capacity improvement. Symmetry 2020, 12, 695. [Google Scholar] [CrossRef]
- Yoo, I.; Smith, D.R. Dynamic metasurface antennas for higher-order MIMO systems in indoor environments. IEEE Wirel. Communica. Lett. 2020, 9, 1129–1132. [Google Scholar] [CrossRef]
- Alsabah, M.; Naser, M.A.; Mahmmod, B.M.; Abdulhussain, S.H.; Eissa, M.R.; Baidhani, A.A.; Noordin, N.K.; Sait, S.M.; Utaibi, K.A.A.; Hashim, F. 6G Wireless communications networks: A comprehensive survey. IEEE Access 2021, 9, 148191–148243. [Google Scholar] [CrossRef]
- Mahmood, N.H.; Alves, H.; López, O.A.; Shehab, M.; Osorio, D.P.M.; Aho, M.L. Six key features of machine type communication in 6G. In Proceedings of the 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 17–20 March 2020; pp. 1–5. [Google Scholar]
- Chen, R.; Liu, M.; Hui, Y.; Cheng, N.; Li, J. Reconfigurable intelligent surfaces for 6G IoT wireless positioning: A contemporary survey. IEEE Internet Things J. 2022, 1–13. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.; Oh, J. Large-aperture metamaterial lens antenna for multi-layer MIMO transmission for 6G. IEEE Access 2022, 10, 20486–20495. [Google Scholar] [CrossRef]
- Dicandia, F.A.; Fonseca, N.J.G.; Bacco, M.; Mugnaini, S.; Genovesi, S. Space-air-ground integrated 6G wireless communication networks: A review of antenna technologies and application scenarios. Sensors 2022, 22, 3136. [Google Scholar] [CrossRef] [PubMed]
Ref. | MIMO Element | Antenna Size (mm3) | Antenna Frequency Band (GHz) | Bandwidth Improvement Technique | Isolation (dB) with Decoupling Techniques | Gain (dBi) | Efficiency (%) | ECC | CCL (bits/s/Hz) |
---|---|---|---|---|---|---|---|---|---|
[22] | 4 × 4 | 48 × 34 × 1.6 | 3.52–10.08 | Modified rectangular patch | ≤−23 Neutralization line | 0.95–2.91 | 70.01–79.87 | ≤0.039 | ≤0.29 |
[24] | 2 × 2 | 25 × 36 × 1.6 | 2.78–17.43 | Corner-truncated rhombus-shaped (CTRS) | <−19 Rectangular strip connected with GP | - | - | <0.008 | <0.31 |
[25] | 2 × 2 | 36 × 22 × 1.6 | 2.5–2.85/4.82–6.1 | Square radiating patch | <−18 Flag-shaped stub connected with middle GP | 9.992 | - | <0.05 | - |
[26] | 2 × 2 | 21 × 34 × 1.6 | 3.52–9.89 | Dome-shaped patch | ≤−22 Neutralization line | 3.08–5.12 | >62 | ≤0.005 | <0.26 |
[27] | 2 × 2 | 30 × 50 × 1 | 3–10.9 | F-shaped radiators with L-shaped open-slots | ≤−20 Fork-shaped slots | 1.9–38 | - | <0.06 | - |
[28] | 2 × 2 | 22 × 43.5 × 1 | 2.45 | L-shaped radiating patch | <−40 Tapered slot | 1.9 | 81.7 | 0.06 | - |
[29] | 4 × 4 | 42 × 42 × 1 | 3.3–4.2 | Four conjoined slots | <−10 Circular slot | - | 47–64 | <0.06 | - |
[30] | 4 × 4 | 45 × 45 × 1.6 | 4.3–6.45 | Split-shaped radiating patch | <−20 Decoupling structure | 4.0–5.0 | 90 | <0.2 | <0.018 |
[31] | 4 × 4 | 40 × 40 × 1.6 | 3.1–11 | Circular patch | <−20 Decoupling structure | 3.28 (avg. gain) | - | <0.004 | <0.4 |
[32] | 3 × 3 | 45 × 25 × 1.588 | 3.1–11.5 | Staircase-shaped radiators | ≤−19 Spatial diversity | 5.5 (peak gain) | 61–98 | ≤ 0.2 | - |
[33] | 4 × 4 | 110 × 110 × 1.45 | 1.7–7.2 | Kraus technique | <−20 Electro-magnetic walls | 3.0–5.2 | 90 | 0.0025 | - |
[34] | 2 × 2 | 29.5 × 60 × 1.6 | 3.05–20 | L-like stubs | <−20 Metallic barriers | 3.36–4.92 | 83 | <0.00012 | 0.325 |
[35] | 2 × 2 | 50 × 35 × 1 | 3.0–11 | L-shaped parasitic branches | <−25 Fence-type decoupling structure | above 3 dB | >80 | <0.004 | - |
[36] | 2 × 2 | 18 × 28 × 1.6 | 1.9–14 | Three crossed X-shaped stubs | <−15.5 X-shaped stubs in ground planes | 0.4–4.8 | - | <0.09 | <0.4 |
[37] | 2 × 2 | 16 × 26 × 1.6 | 2.82–14.45 | Circular radiator | <−22 Stubs and protruded strip | 0.7–6.86 | ≥91.7 | <0.08 | - |
Ref. No. | MIMO Element | Antenna Size (mm3) | Antenna Frequency Band (GHz) | Technique to Achieve Dual-band | Isolation (dB) with Decoupling TECHNIQUES | Gain (dBi) | Efficiency (%) | ECC | CCL (bits/s/Hz) |
---|---|---|---|---|---|---|---|---|---|
[42] | 2 × 2 | 20 × 34 × 16 | 2.11–4.19/4.98–6.81 | Embedding a pair of comb-shaped slots in the GP | <−21 T-stub with comb-shaped slots | 2.75–4.19 | >70 | <0.004 | <0.32 |
[48] | 2 × 2 | 46 × 30 × 1.6 | 1.85–3.63/5.07–7.96 | Swastika-shaped slot in the rectangular patch | <−17.21 T-shaped narrow conducting strip in GP | 1.14–4.12/1.42–4.78 | 71.21–92.69/70.55–90.99 | <0.003 | <0.35 |
[49] | 2 × 2 | 62 × 25.6 × 1.524 | 2.99–3.61/4.53–4.92 | Arrow-shaped strip in between the U-shaped patch | <−16 Defected ground with L-shaped slot with strip | 2.96–3.14/3.69–3.84 | 72.68–80.24 | <0.002 | <0.32 |
[50] | 2 × 2 | 69 × 34 × 4.2 | 2.375–2.52/4.98–5.88 | Inverted F-shaped | <−18 Slots on GP | 2.66/5.18 | - | <0.01 | - |
[51] | 2 × 2 | 52 × 77.5 × 1.6 | 2.4–2.48/5.15–5.825 | Horizontal U-strip | <−15 Inverted T-slot and meander line resonancebranch | - | - | <0.2 | - |
[52] | 2 × 2 | 32 × 32 × 1.59 | 2.36–2.59/3.17–3.77 | T-shaped strip and rectangular strip | <−15 Rectangular microstrip stub with defected GP | 5.8 (peak gain) | 76 | <0.02 | - |
[53] | 2 × 2 | 30 × 30 × 1.6 | 3.32–3.74/5.45–6.05 | Trapezoidal-shaped patch | <−20 T-shaped branch | <1.5/3.5 (peak gain both band) | - | - | - |
[54] | 4 × 4 | 30 × 30 × 0.8 | 4.58–6.12 | Rectangular patch | <−15.4 Swastika- shaped decoupling strip | 4.02 | 67–82 | <0.15 | - |
[55] | 4 × 4 | 40 × 40 × 1.6 | 2.93/5.68 | L-shaped with split ring resonator | <−14 SRR | 4 | 83.48–89.55 | <0.05 | <0.5 |
[56] | 4 × 4 | 85 × 85 × 0.8 | 2.32–2.95 | Metal strip | <−14 Parasitic element | 5.5 | 83 −90 | <0.008 | - |
[57] | 4 × 4 | 38 × 38 × 1.6 | 2.38–2.45/2.96–4.01 | Two asymmetric U-shaped slots in the radiating patch | ≤−18 Four metallic strips in the GP | - | - | <0.008 | <0.35 |
[58] | 2 × 2 | 70 × 70 × 0.8 | 2.4~2.5/5.6~5.8 | Width of branches | <−25 Loadeddummy elements | - | Not given value | Not given value | - |
[59] | 2 × 2 | 72 × 56 × 0.8 | 2.24–2.90/3.9–7.55 | Rectangle split-ring-resonator | <−24 ITI-shaped structure | 2.5–5.6 | - | <0.04 | <0.4 |
[60] | 2 × 2 | 105 × 105 × 1.83 | 2.23–2.46/3.22–4.04 | Slotted interconnected ring resonator | <−12 | 3.6/7.1 (peak gain) | 74–84 | 0.002 | - |
[62] | 1 × 2 | 51 × 29.6 × 1.6 | 2.4/5.2 | Slotted rectangular patch | <−25 EBG structure | 2.2/3.8 (peak gain) | - | 0.07 | - |
[63] | 4 × 4 | 58 × 60 × 1.6 | 1.55–2.65/3.35–3.65 | Two opposite slots in the radiating elements | <−10 Orthogonal plus-shaped partial ground | 2.2/3.8 | - | <0.08 | <0.4 |
[64] | 2 × 2 | 38.6 × 56.4 × 1.524 | 3.5/4.85 | L-shaped branches | <−29 DGS and ground branches | 2.45/4.56 | - | <0.005 | - |
Ref. | MIMO Element | Antenna Size (mm3) | Frequency Band (GHz) | 3-dB AR Bandwidth (GHz) | CP Technique | Gain (dBi) | Isolation (dB) | ECC | CCL bits/s/Hz |
---|---|---|---|---|---|---|---|---|---|
[71] | 2 × 2 | 24 × 24 × 1.6 | 3.04–8.11 | 4.42–6.11 | Asymmetric Z-shaped patch with stub loaded defected GP | 0.28–2.76 | <−16 | <0.004 | <0.32 |
[73] | 2 × 2 | 56 × 32 × 3 | 5.10–5.85 | 5.10–5.85 | Truncated corner patch with defected periodic GP | 5.8 | ≤−20 | - | - |
[74] | 2 × 2 | 95 × 49.7 × 1.6 | 3.15–3.93 | 3.3–3.8 | Cross ring slot with DRA truncation | 4.83 | <−26 | < 0.03 | <0.10 |
[75] | 2 × 2 | 50 × 70 × 1.6 | 2.21–3.13/3.40–3.92/5.30–6.10 | 5.62–5.86 | Dual strips along with single slot in the GP | 4.1 | <−28 | <0.15 | <0.23 |
[77] | 2 × 2 | 40 × 65 × 1.6 | 5.16–6.30 | 5.20–5.58 | L-shaped DRA | 4.011 | 22.284 | <0.112 | <0.338 |
[78] | 2 × 2 | 350 × 350 × 26.1 | 3.50–4.95 | 3.58–4.40 | Rectangular DRA with parasitic patch | 6.2 | <−28 | <0.04 | - |
[82] | 2 × 2 | 22.5 × 50 × 1.6 | 5.2–6.4 | 5.37–5.72 | Square slot cut in the corner of the GP | 6 (Peak gain) | <−20 | 0.001 | - |
[84] | 4 × 4 | 70 × 68 × 1.6 | 4–13 | 4.2–8.5 | Cross-shaped structure on ground | 6.4 (Peak gain) | ≤−18 | <0.25 | - |
[85] | 2 × 2 | 150 × 100 × 0.8 | 2.47–2.55 | 2.50–2.66 | Offset feeding | 6.1 (Peak gain) | ≤−20 | 0.003 | - |
[86] | 4 × 4 | 80 × 80 × 11.6 | 3.35–3.82/5.09–5.41 | 3.54–3.72/5.04–5.16 | Z-shaped slots | 5.0–6.8 | <−18 | <0.04 | - |
[87] | 2 × 2 | 80 × 40 × 1.6 | 2.9–3.2/3.44–3.64/4.75–5.5 | 3.32–3.58/ 5.0–5.32 | Z-shaped slots in the GP | 2 | ≤−15 | <0.2 | - |
[88] | 2 × 2 | - | 4.75–5.9 | 5.1–5.8 | Parasitic elements | 7.5–8.2 | ≤−22 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, P.; Tiwari, R.N.; Singh, P.; Kumar, P.; Kanaujia, B.K. MIMO Antennas: Design Approaches, Techniques and Applications. Sensors 2022, 22, 7813. https://doi.org/10.3390/s22207813
Sharma P, Tiwari RN, Singh P, Kumar P, Kanaujia BK. MIMO Antennas: Design Approaches, Techniques and Applications. Sensors. 2022; 22(20):7813. https://doi.org/10.3390/s22207813
Chicago/Turabian StyleSharma, Preeti, Rakesh N. Tiwari, Prabhakar Singh, Pradeep Kumar, and Binod K. Kanaujia. 2022. "MIMO Antennas: Design Approaches, Techniques and Applications" Sensors 22, no. 20: 7813. https://doi.org/10.3390/s22207813
APA StyleSharma, P., Tiwari, R. N., Singh, P., Kumar, P., & Kanaujia, B. K. (2022). MIMO Antennas: Design Approaches, Techniques and Applications. Sensors, 22(20), 7813. https://doi.org/10.3390/s22207813