Molinara, M.; Cancelliere, R.; Di Tinno, A.; Ferrigno, L.; Shuba, M.; Kuzhir, P.; Maffucci, A.; Micheli, L.
A Deep Learning Approach to Organic Pollutants Classification Using Voltammetry. Sensors 2022, 22, 8032.
https://doi.org/10.3390/s22208032
AMA Style
Molinara M, Cancelliere R, Di Tinno A, Ferrigno L, Shuba M, Kuzhir P, Maffucci A, Micheli L.
A Deep Learning Approach to Organic Pollutants Classification Using Voltammetry. Sensors. 2022; 22(20):8032.
https://doi.org/10.3390/s22208032
Chicago/Turabian Style
Molinara, Mario, Rocco Cancelliere, Alessio Di Tinno, Luigi Ferrigno, Mikhail Shuba, Polina Kuzhir, Antonio Maffucci, and Laura Micheli.
2022. "A Deep Learning Approach to Organic Pollutants Classification Using Voltammetry" Sensors 22, no. 20: 8032.
https://doi.org/10.3390/s22208032
APA Style
Molinara, M., Cancelliere, R., Di Tinno, A., Ferrigno, L., Shuba, M., Kuzhir, P., Maffucci, A., & Micheli, L.
(2022). A Deep Learning Approach to Organic Pollutants Classification Using Voltammetry. Sensors, 22(20), 8032.
https://doi.org/10.3390/s22208032