Experimental Research on a Hybrid Algorithm for Localisation and Reconstruction of the Impact Force Applied to a Rectangular Steel Plate Structure
Abstract
:1. Introduction
- The proposed algorithm maintains high localisation accuracy and efficiency simultaneously in comparison to the traditional optimisation strategy and PRMCSM method.
- This algorithm is not demanding in terms of region delineation and is highly adaptable.
2. Optimisation Algorithm for Impact Force Identification
3. PRMCSM Algorithm for Impact Force Identification
4. Hybrid Algorithm Based on Optimisation Process and PRMCSM Method
- (1)
- Step one: Pre-processing
- (2)
- Step two: Region localisation
- (3)
- Step three: Transfer matrix construction
- (4)
- Step four: Random impact force identification
5. Experimental Set-Up and Procedure
6. Analysis and Discussion
6.1. Experimental Verification of the Hybrid Algorithm
Validation Point | Nearest Reference Point | Localisation | PRE | RE | CC |
---|---|---|---|---|---|
V1 | F1S1T1R2 | F1S1T1R2 (√) | 0.3165 | 0.4281 | 0.9307 |
V2 | F1S1T3R6 | F1S1T3R6 (√) | 0.1370 | 0.2840 | 0.9569 |
V3 | F1S1T2R4 | F1S1T2R4 (√) | 0.1017 | 0.3403 | 0.9451 |
V4 | F1S1T2R5, F1S1T2R6, F1S1T2R8, or F1S1T2R9 | F1S1T2R9 (√) | 0.4713 | 0.6342 | 0.8233 |
V5 | F1S2T1R1 | F1S2T1R1 (√) | 0.2523 | 0.4537 | 0.9385 |
V6 | F1S2T3R2 | F1S2T3R2 (√) | 0.3519 | 0.7315 | 0.9590 |
V7 | F1S2T1R6, F1S2T1R9, F1S2T2R4, or F1S2T2R7 | F1S2T2R7 (√) | 0.3611 | 0.4641 | 0.9150 |
V8 | F1S2T3R7 | F1S2T3R7 (√) | 0.0167 | 0.1704 | 0.9887 |
V9 | F1S3T1R2 | F1S3T1R2 (√) | 0.1563 | 0.2240 | 0.9779 |
V10 | F1S3T2R3 | F1S3T2R3 (√) | 0.2500 | 0.4057 | 0.9354 |
V11 | F1S3T3R8 | F1S3T3R8 (√) | 0.1551 | 0.3095 | 0.9506 |
V12 | F2S1T1R1 | F2S1T1R1 (√) | 0.1375 | 0.3421 | 0.9491 |
V13 | F1S3T2R7 | F1S3T2R7 (√) | 0.3551 | 0.8485 | 0.8822 |
V14 | F2S1T3R6 | F2S1T3R6 (√) | 0.2125 | 0.3760 | 0.9333 |
V15 | F2S1T1R6, or F2S1T2R4 | F2S1T1R6 (√) | 0.3531 | 0.4341 | 0.9453 |
V16 | F2S1T1R7 | F2S1T1R7 (√) | 0.0807 | 0.2087 | 0.9799 |
V17 | F2S1T3R7 | F2S1T3R7 (√) | 0.0590 | 0.1496 | 0.9927 |
V18 | F2S2T2R5 | F2S2T2R5 (√) | 0.0824 | 0.2379 | 0.9727 |
V19 | F2S2T3R4 | F2S2T3R4 (√) | 0.1831 | 0.2676 | 0.9690 |
V20 | F2S2T1R9 | F2S2T1R9 (√) | 0.2710 | 0.9328 | 0.8591 |
V21 | F2S2T3R9, or F2S3T3R3 | F2S2T3R9 (√) | 0.0155 | 0.3012 | 0.9542 |
V22 | F2S3T2R4 | F2S3T2R4 (√) | 0.0262 | 0.1692 | 0.9907 |
V23 | F2S3T3R2 | F2S3T3R2 (√) | 0.3209 | 0.3984 | 0.9449 |
V24 | F2S3T1R4 | F2S3T1R4 (√) | 0.0409 | 0.1321 | 0.9907 |
V25 | F2S3T3R7 | F2S3T3R7 (√) | 0.0490 | 0.1824 | 0.9821 |
6.2. Accuracy and Efficiency Analysis Based on Different Region Divisions
6.3. Comparative Analysis of Different Methodologies
7. Conclusions
- A feasibility study of the hybrid algorithm was conducted based on a hanging rectangular plate model and the experimental results indicate that the proposed method exhibits a high accuracy in the determination of the locations of random impact forces and an acceptable requirement in the reconstruction of time histories.
- For region localisation of impact forces based on the hybrid algorithm, once the smallest region unit is determined, multiple region divisions will not affect the localisation accuracy or efficiency. However, this was only verified by using a simple plate structure, without involving a complex structure.
- Compared with the traditional optimisation algorithm, the hybrid algorithm offers the same accuracy, but its computational time is much less than that of the former; meanwhile, compared with that of the PRMCSM algorithm, its efficiency is slightly lower, though its accuracy is higher. Therefore, the hybrid algorithm maintains the accuracy and effectiveness of impact localisation, which is the most important highlight.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Validation Point | Nearest Reference Point | ||
---|---|---|---|
Optimisation Algorithm | PRMCSM Algorithm | Hybrid Algorithm (3) | |
V1 | R2 | A1R2 | F1S1T1R2 |
V2 | R18 | A3R6 | F1S1T3R6 |
V3 | R13 | A2R4 | F1S1T2R4 |
V4 | R14, R15, R23, or R24 | A2R5, A2R6, A2R8, or A2R9 | F1S1T2R5, F1S1T2R6, F1S1T2R8, or F1S1T2R9 |
V5 | R28 | A4R1 | F1S2T1R1 |
V6 | R35 | A6R2 | F1S2T3R2 |
V7 | R39, R48, R40, or R49 | A4R6, A4R9, A5R4, or A5R7 | F1S2T1R6, F1S2T1R9, F1S2T2R4, or F1S2T2R7 |
V8 | R52 | A6R7 | F1S2T3R7 |
V9 | R56 | A7R2 | F1S3T1R2 |
V10 | R60 | A8R3 | F1S3T2R3 |
V11 | R80 | A9R8 | F1S3T3R8 |
V12 | R82 | A10R1 | F2S1T1R1 |
V13 | R76 | A8R7 | F1S3T2R7 |
V14 | R99 | A12R6 | F2S1T3R6 |
V15 | R93 or R94 | A10R6 or A11R4 | F2S1T1R6, or F2S1T2R4 |
V16 | R100 | A10R7 | F2S1T1R7 |
V17 | R106 | A12R7 | F2S1T3R7 |
V18 | R122 | A14R5 | F2S2T2R5 |
V19 | R124 | A15R4 | F2S2T3R4 |
V20 | R129 | A13R9 | F2S2T1R9 |
V21 | R135 or R144 | A15R9 or A18R3 | F2S2T3R9, or F2S3T3R3 |
V22 | R148 | A17R4 | F2S3T2R4 |
V23 | R143 | A18R2 | F2S3T3R2 |
V24 | R145 | A16R4 | F2S3T1R4 |
V25 | R160 | A18R7 | F2S3T3R7 |
References
- Inoue, H.; Harrigan, J.J.; Reid, S.R. Review of inverse analysis for indirect measurement of impact force. Appl. Mech. Rev. 2001, 54, 503–524. [Google Scholar] [CrossRef]
- Sanchez, J.; Benaroya, H. Review of force reconstruction techniques. J. Sound Vib. 2014, 333, 2999–3018. [Google Scholar] [CrossRef]
- Uhl, T. The inverse identification problem and its technical application. Arch. Appl. Mech. 2007, 77, 325–337. [Google Scholar] [CrossRef]
- Zhang, M.; Qiu, B.B.; Kalhori, H.; Qu, X.Q. Hybrid reconstruction method for indirect monitoring of an ice load of a steel gate in a cold region. Cold Reg. Sci. Technol. 2019, 162, 19–34. [Google Scholar] [CrossRef]
- Zhang, M.; Qiu, B.B.; Zhu, M.Y.; Qu, X.Q. Novel computation method of reducing ill-posedness for structural static distributed load identification by optimising strain gauge locations. Mech. Syst. Signal Process. 2019, 124, 83–110. [Google Scholar] [CrossRef]
- Bao, Y.; Li, H.; Chen, Z.; Zhang, F.; Guo, A. Sparse l(1) optimization-based identification approach for the distribution of moving heavy vehicle loads on cable-stayed bridges. Struct. Control. Health Monit. 2016, 23, 144–155. [Google Scholar] [CrossRef]
- Zhi, L.H.; Fang, M.X.; Li, Q.S. Estimation of wind loads on a tall building by an inverse method. Struct. Control. Health Monit. 2017, 24, e1908. [Google Scholar] [CrossRef]
- Bao, Y.; Shi, Z.; Beck, J.L.; Li, H.; Hou, T.Y. Identification of time-varying cable tension forces based on adaptive sparse time-frequency analysis of cable vibrations. Struct. Control. Health Monit. 2017, 24, e1889. [Google Scholar] [CrossRef]
- Zhang, E.; Antoni, J.; Feissel, P. Bayesian force reconstruction with an uncertain model. J. Sound Vib. 2012, 331, 798–814. [Google Scholar] [CrossRef]
- Ding, Y.; Law, S.S.; Wu, B.; Xu, G.S.; Lin, Q.; Jiang, H.B.; Miao, Q.S. Average acceleration discrete algorithm for force identification in state space. Eng. Struct. 2013, 56, 1880–1892. [Google Scholar] [CrossRef]
- Zhu, T.; Xiao, S.N.; Yang, G.W. Force identification in time domain based on dynamic programming. Appl. Math. Comput. 2014, 235, 226–234. [Google Scholar] [CrossRef]
- Liu, J.; Sun, X.; Han, X.; Jiang, C.; Yu, D. A novel computational inverse technique for load identification using the shape function method of moving least square fitting. Comput. Struct. 2014, 144, 127–137. [Google Scholar] [CrossRef]
- Liu, J.; Meng, X.; Zhang, D.; Jiang, C.; Han, X. An efficient method to reduce ill-posedness for structural dynamic load identification. Mech. Syst. Signal Process. 2017, 95, 273–285. [Google Scholar] [CrossRef]
- Samagassi, S.; Khamlichi, A.; Driouach, A.; Jacquelin, E. Reconstruction of multiple impact forces by wavelet relevance vector machine approach. J. Sound Vib. 2015, 359, 56–67. [Google Scholar] [CrossRef]
- Prawin, J.; Rao, A.R.M. An online input force time history reconstruction algorithm using dynamic principal component analysis. Mech. Syst. Signal Process. 2018, 99, 516–533. [Google Scholar] [CrossRef]
- Qiao, B.; Zhang, X.; Gao, J.; Chen, X. Impact-force sparse reconstruction from highly incomplete and inaccurate measurements. J. Sound Vib. 2016, 376, 72–94. [Google Scholar] [CrossRef]
- Qiao, B.; Mao, Z.; Liu, J.; Zhao, Z.; Chen, X. Group sparse regularisation for impact force identification in time domain. J. Sound Vib. 2019, 445, 44–63. [Google Scholar] [CrossRef]
- Yan, G.; Sun, H.; Buyukozturk, O. Impact load identification for composite structures using Bayesian regularization and unscented Kalman filter. Struct. Control. Health Monit. 2017, 24, e1910. [Google Scholar] [CrossRef]
- Chang, X.; Yan, Y.; Wu, Y. Study on solving the ill-posed problem of force load reconstruction. J. Sound Vib. 2019, 440, 186–201. [Google Scholar] [CrossRef]
- Qiu, B.; Zhang, M.; Xie, Y.; Qu, X.; Li, X. Impact Force Identification on Carbon Fibre–Epoxy Honeycomb Composite Panel Based on Local Convex Curve Criterion. Exp. Mech. 2019, 59, 1171–1185. [Google Scholar] [CrossRef]
- Hajzargerbashi, T.; Kundu, T.; Bland, S. An improved algorithm for detecting point of impact in anisotropic inhomogeneous plates. Ultrasonics 2011, 51, 317–324. [Google Scholar] [CrossRef]
- Zhao, G.; Hu, H.; Li, S.; Liu, L.; Li, K. Localisation of impact on composite plates based on integrated wavelet transform and hybrid minimization algorithm. Compos. Struct. 2017, 176, 234–243. [Google Scholar] [CrossRef]
- Yang, M.; Ahmari, S.; Selekwa, M. Impact event identification in thin plates through real strain measurements. Struct. Control. Health Monit. 2017, 24, e1933. [Google Scholar] [CrossRef]
- Zhu, J.; Ho, S.C.M.; Kong, Q.; Patil, D.; Mo, Y.L.; Song, G. Estimation of impact location on concrete column. Smart Mater. Struct. 2017, 26, 055037. [Google Scholar] [CrossRef]
- Jang, B.W.; Kim, C.G. Impact localisation of composite stiffened panel with triangulation method using normalised magnitudes of fiber optic sensor signals. Compos. Struct. 2019, 211, 522–529. [Google Scholar] [CrossRef]
- Hansen, P.C. Regularisation tools version 4.0 for matlab 7.3. Numer. Algorithms 2007, 46, 189–194. [Google Scholar] [CrossRef]
- Li, Q.; Lu, Q. Force localisation and reconstruction using a two-step iterative approach. J. Vib. Control. 2018, 24, 3830–3841. [Google Scholar] [CrossRef]
- Wambacq, J.; Maes, K.; Rezayat, A.; Guillaume, P.; Lombaert, G. Localisation of dynamic forces on structures with an interior point method using group sparsity. Mech. Syst. Signal Process. 2019, 115, 593–606. [Google Scholar] [CrossRef]
- Kalhori, H.; Ye, L.; Mustapha, S. Inverse estimation of impact force on a composite panel using a single piezoelectric sensor. J. Intell. Mater. Syst. Struct. 2017, 28, 799–810. [Google Scholar] [CrossRef]
- Hu, N.; Fukunaga, H.; Matsumoto, S.; Yan, B.; Peng, X.H. An efficient approach for identifying impact force using embedded piezoelectric sensors. Int. J. Impact Eng. 2007, 34, 1258–1271. [Google Scholar] [CrossRef]
- El-Bakari, A.; Khamlichi, A.; Jacquelin, E.; Dkiouak, R. Assessing impact force localisation by using a particle swarm optimization algorithm. J. Sound Vib. 2014, 333, 1554–1561. [Google Scholar] [CrossRef] [Green Version]
- Kazemi, M.; Hematiyan, M.R. An Efficient Inverse Method for Identification of the Location and Time History of an Elastic Impact Load. J. Test. Eval. 2009, 37, 545–555. [Google Scholar]
- Liang, D.; Yuan, S.F.; Liu, M.L. Distributed coordination algorithm for impact location of preciseness and real-time on composite structures. Measurement 2013, 46, 527–536. [Google Scholar] [CrossRef]
- Hossain, M.S.; Ong, Z.C.; Ismail, Z.; Khoo, S.Y. A comparative study of vibrational response based impact force localisation and quantification using radial basis function network and multilayer perceptron. Expert Syst. Appl. 2017, 85, 87–98. [Google Scholar] [CrossRef]
- Park, C.Y.; Kim, J.H.; Jun, S.M.; Kim, C.G. Localisations and force reconstruction of low-velocity impact in a composite panel using optical fiber sensors. Adv. Compos. Mater. 2012, 21, 357–369. [Google Scholar] [CrossRef]
- Ahmari, S.; Yang, M. Impact location and load identification through inverse analysis with bounded uncertain measurements. Smart Mater. Struct. 2013, 22, 085024. [Google Scholar] [CrossRef]
- Yan, G.; Zhou, L. Impact load identification of composite structure using genetic algorithms. J. Sound Vib. 2009, 319, 869–884. [Google Scholar] [CrossRef]
- Thiene, M.; Galvanetto, U. Impact location in composite plates using proper orthogonal decomposition. Mech. Res. Commun. 2015, 64, 1–7. [Google Scholar] [CrossRef]
- Kalhori, H.; Alamdari, M.M.; Ye, L. Automated algorithm for impact force identification using cosine similarity searching. Measurement 2018, 122, 648–657. [Google Scholar] [CrossRef]
- Lage, Y.E.; Maia, N.M.M.; Neves, M.M.; Ribeiro, A.M.R. Force identification using the concept of displacement transmissibility. J. Sound Vib. 2013, 332, 1674–1686. [Google Scholar] [CrossRef]
- Jayalakshmi, V.; Lakshmi, K.; Rao, A.R.M. Reconstruction of impact load on structures with limited measurements using dynamic hybrid adaptive differential search algorithm. Inverse Probl. Sci. Eng. 2020, 28, 340–373. [Google Scholar] [CrossRef]
- Qiu, B.B.; Zhang, M.; Xie, Y.G.; Qu, X.Q.; Li, X. Localisation of unknown impact loads on a steel plate using a pattern recognition method combined with the similarity metric via structural stress responses in the time domain. Mech. Syst. Signal Process. 2019, 128, 429–445. [Google Scholar] [CrossRef]
- Qiu, B.B.; Zhang, M.; Li, X.; Qu, X.Q.; Tong, F.S. Unknown impact force localisation and reconstruction in experimental plate structure using time-series analysis and pattern recognition. Int. J. Mech. Sci. 2020, 166, 105231. [Google Scholar] [CrossRef]
Geometrical parameters | Length (mm) | 1000 |
Width (mm) | 600 | |
Thickness (mm) | 5 | |
Material properties (Q235) | Young’s modulus (Pa) | 2.06 × 1011 |
Poisson’s ratio | 0.3 | |
Density (kg/m3) | 7850 |
Algorithm Name | Hybrid Algorithm (1) | Hybrid Algorithm (2) | Hybrid Algorithm (3) |
---|---|---|---|
Average total calculation time (s) | 179.53 | 179.19 | 179.38 |
Accuracy rate (%) | 100% | 100% | 100% |
Validation Point | Localisation | ||
---|---|---|---|
Optimisation Algorithm | PRMCSM Algorithm | Hybrid Algorithm (3) | |
V1 | R2 (√) | A1R2 (√) | F1S1T1R2 (√) |
V2 | R18 (√) | A3R6 (√) | F1S1T3R6 (√) |
V3 | R13 (√) | A2R4 (√) | F1S1T2R4 (√) |
V4 | R24 (√) | A2R8 (√) | F1S1T2R9 (√) |
V5 | R28 (√) | A4R1 (√) | F1S2T1R1 (√) |
V6 | R35 (√) | A6R2 (√) | F1S2T3R2 (√) |
V7 | R49 (√) | A5R7 (√) | F1S2T2R7 (√) |
V8 | R52 (√) | A6R7 (√) | F1S2T3R7 (√) |
V9 | R56 (√) | A7R2 (√) | F1S3T1R2 (√) |
V10 | R60 (√) | A8R3 (√) | F1S3T2R3 (√) |
V11 | R80 (√) | A9R8 (√) | F1S3T3R8 (√) |
V12 | R82 (√) | A10R1 (√) | F2S1T1R1 (√) |
V13 | R76 (√) | A8R8(×) | F1S3T2R7 (√) |
V14 | R99 (√) | A12R6 (√) | F2S1T3R6 (√) |
V15 | R93 (√) | A10R6 (√) | F2S1T1R6 (√) |
V16 | R100 (√) | A10R7 (√) | F2S1T1R7 (√) |
V17 | R106 (√) | A12R7 (√) | F2S1T3R7 (√) |
V18 | R122 (√) | A14R5 (√) | F2S2T2R5 (√) |
V19 | R124 (√) | A15R4 (√) | F2S2T3R4 (√) |
V20 | R129 (√) | A13R8(×) | F2S2T1R9 (√) |
V21 | R135 (√) | A15R9 (√) | F2S2T3R9 (√) |
V22 | R148 (√) | A17R4 (√) | F2S3T2R4 (√) |
V23 | R143 (√) | A18R2 (√) | F2S3T3R2 (√) |
V24 | R145 (√) | A16R4 (√) | F2S3T1R4 (√) |
V25 | R160 (√) | A18R7 (√) | F2S3T3R7 (√) |
Correct number | 25 | 23 | 25 |
Accuracy rate (%) | 100% | 92% | 100% |
Total calculation time (s) | 3446 | 22 | 179 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, B.; Lu, Y.; Qu, X.; Li, X. Experimental Research on a Hybrid Algorithm for Localisation and Reconstruction of the Impact Force Applied to a Rectangular Steel Plate Structure. Sensors 2022, 22, 8123. https://doi.org/10.3390/s22218123
Qiu B, Lu Y, Qu X, Li X. Experimental Research on a Hybrid Algorithm for Localisation and Reconstruction of the Impact Force Applied to a Rectangular Steel Plate Structure. Sensors. 2022; 22(21):8123. https://doi.org/10.3390/s22218123
Chicago/Turabian StyleQiu, Binbin, Yang Lu, Xianqiang Qu, and Xu Li. 2022. "Experimental Research on a Hybrid Algorithm for Localisation and Reconstruction of the Impact Force Applied to a Rectangular Steel Plate Structure" Sensors 22, no. 21: 8123. https://doi.org/10.3390/s22218123
APA StyleQiu, B., Lu, Y., Qu, X., & Li, X. (2022). Experimental Research on a Hybrid Algorithm for Localisation and Reconstruction of the Impact Force Applied to a Rectangular Steel Plate Structure. Sensors, 22(21), 8123. https://doi.org/10.3390/s22218123