An Improved Online Self-Calibration Method Utilizing Angular Velocity Observation for Ultra High Accuracy PIGA-Based IMU
Abstract
:1. Introduction
2. Modeling and Analysis of PIGA
2.1. Kinetics Analysis of PIGA
2.2. Simplified PIGA Error Model
3. Online Self-Calibration Method Utilizing Angular Velocity Observation
3.1. Error Model of PIGAs in Filtering
3.2. 43-Dimensional Kalman Filtering Model for Self-Calibration
4. Experimental Results and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ren, S.Q.; Sun, C. A New Method for Calibrating Nonlinear Coefficients of PIGA on Linear Vibrator. IEEE Trans. Instrum. Meas. 2019, 68, 2898–2906. [Google Scholar] [CrossRef]
- Nie, B.; Chen, G.; Luo, X.; Liu, B. Error Mechanism and Self-Calibration of Single-Axis Rotational Inertial Navigation System. Math. Probl. Eng. 2019, 2019, 8912341. [Google Scholar] [CrossRef] [Green Version]
- Wen, Z.; Yang, G.; Cai, Q.; Chen, T. A Novel Bluetooth Odometer Aided Smartphone-based Vehicular Navigation in Satellite-denied Environments. IEEE Trans. Ind. Electron. 2022, 46, 1. [Google Scholar] [CrossRef]
- Wang, S.; Ren, S. Calibration of cross quadratic term of gyro accelerometer on centrifuge and error analysis. Aerosp. Sci. Technol. 2015, 43, 30–36. [Google Scholar] [CrossRef]
- Sun, C.; Ren, S.Q.; Zeng, M.; Wang, C.H.; Huo, R. Sequential Calibration Method of Nonlinear Errors of PIGA on Counter-Rotating Platform Centrifuge. IEEE Trans. Instrum. Meas. 2021, 70, 1001811. [Google Scholar] [CrossRef]
- Fong, W.T.; Ong, S.K.; Nee, A.Y.C. Methods for in-field user calibration of an inertial measurement unit without external equipment. Meas. Sci. Technol. 2008, 19, 085202. [Google Scholar] [CrossRef]
- Li, J.; Fang, J.; Du, M. Error analysis and gyro-bias calibration of analytic coarse alignment for airborne POS. IEEE Trans. Instrum. Meas. 2012, 61, 3058–3064. [Google Scholar]
- Han, X.; Hu, S.M.; Luo, H. A new method for bias calibration of laser gyros using a single-axis turning table. Optik 2013, 124, 5588–5590. [Google Scholar] [CrossRef]
- Li, K.; Chen, Y.; Wang, L. Online self-calibration research of single-axis rotational inertial navigation system. Meas. J. Int. Meas. Confed. 2018, 129, 633–641. [Google Scholar] [CrossRef]
- Ren, Q.; Wang, B.; Deng, Z.; Fu, M. A multi-position self-calibration method for dual-axis rotational inertial navigation system. Sens. Actuators A Phys. 2014, 219, 24–31. [Google Scholar] [CrossRef]
- Yu, Y.S.; Lv, Y.H.; Wang, L.; Liu, Z.J. A self-calibration method for gyro scale factor asymmetry in rotational inertial navigation system. IOP Conf. Ser. Mater. Sci. Eng. 2019, 631, 032048. [Google Scholar] [CrossRef]
- Jiang, R.; Yang, G.; Zou, R.; Wang, J.; Li, J. Accurate compensation of attitude angle error in a dual-axis rotation inertial navigation system. Sensors 2017, 17, 615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, Z.; Yang, G.; Cai, Q.; Sun, Y. Modeling and Calibration of the Gyro- Accelerometer Asynchronous Time in Dual-Axis RINS. IEEE Trans. Instrum. Meas. 2021, 70, 3503117. [Google Scholar] [CrossRef]
- Wen, Z.; Yang, G.; Cai, Q. An improved SINS/NHC integrated navigation algorithm based on Ackermann turning geometry. Meas. J. Int. Meas. Confed. 2022, 192, 110859. [Google Scholar] [CrossRef]
- Wen, Z.; Yang, G.; Cai, Q. An improved calibration method for the imu biases utilizing kf-based adagrad algorithm. Sensors 2021, 21, 5055. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Yang, G.; Song, N.; Liu, Y. Systematic calibration for ultra-high accuracy inertial measurement units. Sensors 2016, 16, 940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, J.; Zhang, C.; Cai, Q. An accurate calibration method for accelerometer nonlinear scale factor on a low-cost three-axis turntable. Meas. Sci. Technol. 2014, 25, 025102. [Google Scholar] [CrossRef]
- Cai, Q.; Yang, G.; Song, N.; Yin, H.; Liu, Y. Analysis and calibration of the gyro bias caused by geomagnetic field in a dual-axis rotational inertial navigation system. Meas. Sci. Technol. 2016, 27, 105001. [Google Scholar] [CrossRef]
- Zheng, L.; Zhan, X.; Zhang, X. Nonlinear complementary filter for attitude estimation by fusing inertial sensors and a camera. Sensors 2020, 20, 6752. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Shen, M. Inertial vector measurements based attitude synchronization control for multiple spacecraft formation. Aerosp. Sci. Technol. 2019, 93, 105309. [Google Scholar] [CrossRef]
Time | Rotation Axis (Inner (I) (z-Axis of IMU)/Outer (O) (x-Axis of IMU)) | Rotation Angle along I/O Axis | Attitude after Rotation (X) | Attitude after Rotation (Y) | Attitude after Rotation (Z) |
---|---|---|---|---|---|
0 s | - | - | East | North | Upward |
180 s | O | +90 | East | Upward | South |
270 s | O | +180 | East | Downward | North |
360 s | O | +180 | East | Upward | South |
450 s | I | +90 | Upward | West | South |
540 s | I | +180 | Downward | Upward | South |
630 s | I | +180 | Upward | West | South |
720 s | O | +90 | South | West | Downward |
810 s | O | +180 | North | West | Upward |
900 s | O | +180 | South | West | Downward |
990 s | O | +90 | Downward | West | North |
1080 s | O | +90 | North | West | Upward |
1170 s | O | +90 | Upward | West | South |
1260 s | I | +90 | West | Downward | South |
1350 s | I | +90 | Downward | East | South |
1440 s | I | +90 | East | Upward | South |
1530 s | O | +90 | East | South | Downward |
1620 s | O | +90 | East | Downward | North |
1710 s | O | +90 | East | North | Upward |
Estimated Parameters | Proposed Method | Traditional Method | Reference Values |
---|---|---|---|
−0.0189/h | −0.0092/h | −0.0176/h | |
0.0312/h | 0.0381/h | 0.0309/h | |
0.0852/h | 0.0786/h | 0.0843/h | |
423.23 g | 413.77 g | 423.71 g | |
−808.63 g | −810.65 g | −808.47 g | |
687.76 g | 692.65 g | 687.36 g | |
100,063.42/h/pulse | 100,069.66/h/pulse | 100,063.76/h/pulse | |
100,067.43/h/pulse | 100,068.78/h/pulse | 100,067.90/h/pulse | |
100,053.78/h/pulse | 100,054.74/h/pulse | 100,053.12/h/pulse | |
98,012.98 m/s/pulse | 98,013.12 m/s/pulse | 98,012.34 m/s/pulse | |
98,015.76 m/s/pulse | 98,016.31 m/s/pulse | 98,015.48 m/s/pulse | |
98,063.94 m/s/pulse | 98,062.52 m/s/pulse | 98,063.32 m/s/pulse | |
3.487 | 4.521 | 3.654 | |
−2.653 | −3.987 | −2.76 | |
11.676 | 10.455 | 11.149 | |
9.421 | 9.912 | 9.122 | |
7.645 | 6.938 | 7.476 | |
1.567 | 1.765 | 1.543 | |
−5.141 | −5.267 | −5.134 | |
3.112 | 3.983 | 3.145 | |
6.653 | 5.769 | 6.790 | |
−0.978 m/s/pulse | −1.176 m/s/pulse | −0.981 m/s/pulse | |
−3.313 m/s/pulse | −3.026 m/s/pulse | −3.301 m/s/pulse | |
3.121 m/s/pulse | 3.389 m/s/pulse | 3.112 m/s/pulse |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Hu, S.; Yang, G.; Zhou, X.; Liu, H. An Improved Online Self-Calibration Method Utilizing Angular Velocity Observation for Ultra High Accuracy PIGA-Based IMU. Sensors 2022, 22, 8136. https://doi.org/10.3390/s22218136
Zhang Y, Hu S, Yang G, Zhou X, Liu H. An Improved Online Self-Calibration Method Utilizing Angular Velocity Observation for Ultra High Accuracy PIGA-Based IMU. Sensors. 2022; 22(21):8136. https://doi.org/10.3390/s22218136
Chicago/Turabian StyleZhang, Yongfeng, Shuling Hu, Gongliu Yang, Xiaojun Zhou, and Hongwu Liu. 2022. "An Improved Online Self-Calibration Method Utilizing Angular Velocity Observation for Ultra High Accuracy PIGA-Based IMU" Sensors 22, no. 21: 8136. https://doi.org/10.3390/s22218136
APA StyleZhang, Y., Hu, S., Yang, G., Zhou, X., & Liu, H. (2022). An Improved Online Self-Calibration Method Utilizing Angular Velocity Observation for Ultra High Accuracy PIGA-Based IMU. Sensors, 22(21), 8136. https://doi.org/10.3390/s22218136