Unsupervised Early Detection of Physical Activity Behaviour Changes from Wearable Accelerometer Data
Abstract
:1. Introduction
- RQ1.
- Can PA behaviour changes be periodically detected using step data from activity trackers?
- RQ2.
- Can we detect whether these PA behaviour changes are sustained over time (suggesting a new habit)?
2. Related Work
2.1. Supervised Machine Learning Techniques
2.2. Unsupervised Machine Learning Techniques
2.3. Semi-Supervised Machine Learning Techniques
2.4. Summary of Related Work
3. Challenges of Detecting Physical Activity Behaviour Changes in Health Education
4. Methods
4.1. Dataset Requirements
4.2. U-BEHAVED Data Pre-Processing
4.3. U-BEHAVED Algorithm
4.4. Output
4.5. Illustration
5. Evaluation
5.1. Construction of the Evaluation Dataset
5.2. Evaluation of Behaviour-Change Detection
5.3. Habit Detection Evaluation
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, C.C.; Hsu, Y.L. A Review of Accelerometry-Based Wearable Motion Detectors for Physical Activity Monitoring. Sensors 2010, 10, 7772–7788. [Google Scholar] [CrossRef] [PubMed]
- Santos, O.C. Education still Needs Artificial Intelligence to Support Personalized Motor Skill Learning: Aikido as a Case Study. 2015, Volume 1432, pp. 72–81. Available online: http://ceur-ws.org/Vol-1432/ai_ed_pap9.pdf (accessed on 25 October 2022).
- Dias Pereira dos Santos, A.; Yacef, K.; Martinez-Maldonado, R. Forró Trainer: Automated Feedback for Partner Dance Learning. In Proceedings of the Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization, UMAP ’17, Bratislava, Slovakia, 9–12 July 2017; ACM: New York, NY, USA, 2017; pp. 103–104. [Google Scholar] [CrossRef]
- Martinez-Maldonado, R.; Yacef, K.; Santos, A.D.P.D.; Shum, S.B.; Echeverria, V.; Santos, O.C.; Pechenizkiy, M. Towards Proximity Tracking and Sensemaking for Supporting Teamwork and Learning. In Proceedings of the IEEE 17th International Conference on Advanced Learning Technologies, ICALT 2017, Timisoara, Romania, 3–7 July 2017; pp. 89–91. [Google Scholar] [CrossRef]
- Galy, O.; Yacef, K.; Caillaud, C. Improving Pacific Adolescents’ Physical Activity Toward International Recommendations: Exploratory Study of a Digital Education App Coupled With Activity Trackers. JMIR mHealth uHealth 2019, 7, e14854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, P.H.; Yu, Y.Y.; McDowell, I.; Leung, G.M.; Lam, T.H. A cluster analysis of patterns of objectively measured physical activity in Hong Kong. Public Health Nutr. 2013, 16, 1436–1444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz, C.; Galy, O.; Caillaud, C.; Yacef, K. A Clustering Approach for Modeling and Analyzing Changes in Physical Activity Behaviors From Accelerometers. IEEE Access 2020, 8, 224123–224134. [Google Scholar] [CrossRef]
- Fukuoka, Y.; Zhou, M.; Vittinghoff, E.; Haskell, W.; Goldberg, K.; Aswani, A. Objectively measured baseline physical activity patterns in women in the mped trial: Cluster analysis. J. Med. Internet Res. 2018, 20, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mollee, J.S.; Klein, M.C.A. Empirical Validation of a Computational Model of Influences on Physical Activity Behavior. In Advances in Artificial Intelligence: From Theory to Practice; Benferhat, S., Tabia, K., Ali, M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 353–363. [Google Scholar]
- Sprint, G.; Cook, D.J.; Schmitter-Edgecombe, M. Unsupervised detection and analysis of changes in everyday physical activity data. In Journal of Biomedical Informatics; Holmes, D.E., Jain, L.C., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 63, pp. 54–65. [Google Scholar] [CrossRef]
- Chousiadas, D.; Menychtas, A.; Tsanakas, P.; Maglogiannis, I. Advancing Quantified-Self Applications Utilizing Visual Data Analytics and the Internet of Things. In Proceedings of the IFIP International Conference on Artificial Intelligence Applications and Innovations, Rhodes, Greece, 25–27 May 2018; Springer: Berlin/Heidelberg, Germany, 2018; Volume 436, pp. 263–274. [Google Scholar] [CrossRef]
- Aguilera, A.; Figueroa, C.A.; Hernandez-Ramos, R.; Sarkar, U.; Cemballi, A.; Gomez-Pathak, L.; Miramontes, J.; Yom-Tov, E.; Chakraborty, B.; Yan, X.; et al. mHealth app using machine learning to increase physical activity in diabetes and depression: Clinical trial protocol for the DIAMANTE Study. BMJ Open 2020, 10, e034723. [Google Scholar] [CrossRef] [PubMed]
- Angelides, M.C.; Wilson, L.A.C.; Echeverría, P.L.B. Wearable data analysis, visualisation and recommendations on the go using android middleware. Multimed. Tools Appl. 2018, 77, 26397–26448. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.K.; Chen, F.H.; Lin, S.F. An ai-based exercise prescription recommendation system. Appl. Sci. 2021, 11, 2661. [Google Scholar] [CrossRef]
- Forman, E.M.; Kerrigan, S.G.; Butryn, M.L.; Juarascio, A.S.; Manasse, S.M.; Ontañón, S.; Dallal, D.H.; Crochiere, R.J.; Moskow, D. Can the artificial intelligence technique of reinforcement learning use continuously-monitored digital data to optimize treatment for weight loss? J. Behav. Med. 2019, 42, 276–290. [Google Scholar] [CrossRef]
- Mollee, J.S.; Araújo, E.F.M.; Manzoor, A.; van Halteren, A.T.; Klein, M.C.A. Explaining Changes in Physical Activity Through a Computational Model of Social Contagion. In Springer Proceedings in Complexity; Springer International Publishing, 2017; pp. 213–223. [Google Scholar] [CrossRef]
- Rabbi, M.; Pfammatter, A.; Zhang, M.; Spring, B.; Choudhury, T. Automated Personalized Feedback for Physical Activity and Dietary Behavior Change With Mobile Phones: A Randomized Controlled Trial on Adults. JMIR mHealth uHealth 2015, 3, e42. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Dai, W.; Eggert, J.; Giger, J.T.; Keller, J.; Rantz, M.; He, Z. A real-time system for in-home activity monitoring of elders. In Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine (EMBC 2009); pp. 6115–6118. [CrossRef] [Green Version]
- Zhu, J.; Dallal, D.H.; Gray, R.C.; Villareale, J.; Ontañón, S.; Forman, E.M.; Arigo, D. Personalization Paradox in Behavior Change Apps. Proc. ACM Hum.-Comput. Interact. 2021, 5, 1–21. [Google Scholar] [CrossRef]
- Gasparetti, F.; Aiello, L.M.; Quercia, D. Personalized weight loss strategies by mining activity tracker data. User Model. User-Adapt. Interact. 2020, 30, 447–476. [Google Scholar] [CrossRef]
- Batool, T.; Vanrompay, Y.; Neven, A.; Janssens, D.; Wets, G. CTASS: An intelligent framework for personalized travel behaviour advice to cardiac patients. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 4693–4705. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, H.; Bachner, J.; Pretscher, S.; Groh, G.; Demetriou, Y. Study on Motivating Physical Activity in Children with Personalized Gamified Feedback. In Proceedings of the Adjunct Publication of the 26th Conference on User Modeling, Adaptation and Personalization (UMAP ’18), Association for Computing Machinery, New York, NY, USA, 8–11 July 2018; pp. 221–226. [Google Scholar] [CrossRef]
- Dijkhuis, T.B.; Blaauw, F.J.; van Ittersum, M.W.; Velthuijsen, H.; Aiello, M. Personalized physical activity coaching: A machine learning approach. Sensors 2018, 18, 623. [Google Scholar] [CrossRef] [Green Version]
- Hermens, H.; op den Akker, H.; Tabak, M.; Wijsman, J.; Vollenbroek, M. Personalized Coaching Systems to support healthy behavior in people with chronic conditions. J. Electromyogr. Kinesiol. Off. J. Int. Soc. Electrophysiol. Kinesiol. 2014, 24, 815–826. [Google Scholar] [CrossRef]
- Baranowski, T.; de Moor, C. How many days was that? Intra-individual variability and physical activity assessment. Res. Q. Exerc. Sport 2000, 71, 74–78. [Google Scholar] [CrossRef]
- Jaeschke, L.; Steinbrecher, A.; Jeran, S.; Konigorski, S.; Pischon, T. Variability and reliability study of overall physical activity and activity intensity levels using 24 h-accelerometry-assessed data. BMC Public Health 2018, 18, 1–10. [Google Scholar] [CrossRef]
- Ben-Gal, I. Outlier detection. In Data Mining and Knowledge Discovery Handbook; Springer: Boston, MA, USA, 2005; pp. 131–146. [Google Scholar]
- Kokoska, S.; Zwillinger, D. CRC Standard Probability and Statistics Tables and Formulae, Student Edition; CRC Press: Boca Raton, FL, USA, 1999; p. 15. [Google Scholar] [CrossRef]
- Yacef, K.; Caillaud, C.; Galy, O. Supporting Learning Activities with Wearable Devices to Develop Life-Long Skills in a Health Education App. In Artificial Intelligence in Education; Springer International Publishing: Cham, Switzerland, 2018; pp. 394–398. [Google Scholar]
- Caillaud, C.; Ledger, S.; Diaz, C.; Clerc, G.; Galy, O.; Yacef, K. iEngage: A digital health education program designed to enhance physical activity in young adolescents. PLoS ONE 2022, 17, e0274644. [Google Scholar] [CrossRef]
- Misfit. Fossil Group. Available online: https://www.misfit.com/ (accessed on 2 October 2022).
- Brinton, J.E.; Keating, M.D.; Ortiz, A.M.; Evenson, K.R.; Furberg, R.D. Establishing linkages between distributed survey responses and consumer wearable device datasets: A pilot protocol. JMIR Res. Protoc. 2017, 6, e6513. [Google Scholar] [CrossRef] [Green Version]
- Thambawita, V.; Hicks, S.A.; Borgli, H.; Stensland, H.K.; Jha, D.; Svensen, M.K.; Pettersen, S.A.; Johansen, D.; Johansen, H.D.; Pettersen, S.D.; et al. PMData: A Sports Logging Dataset. In Proceedings of the 11th ACM Multimedia Systems Conference, MMSys ’20, Istanbul, Turkey, 8–11 June 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 231–236. [Google Scholar] [CrossRef]
- Fitbit. Google. Available online: https://www.fitbit.com/ (accessed on 2 October 2022).
- Lustria, M.L.A.; Noar, S.M.; Cortese, J.; Van Stee, S.K.; Glueckauf, R.L.; Lee, J. A meta-analysis of web-delivered tailored health behavior change interventions. J. Health Commun. 2013, 18, 1039–1069. [Google Scholar] [CrossRef]
- Murtagh, E.M.; Mair, J.L.; Aguiar, E.; Tudor-Locke, C.; Murphy, M.H. Outdoor Walking Speeds of Apparently Healthy Adults: A Systematic Review and Meta-analysis. Sport. Med. 2021, 51, 125–141. [Google Scholar] [CrossRef] [PubMed]
- Olds, T.S.; Ridley, K.; Dollman, J.; Maher, C.A. The validity of a computerized use of time recall, the multimedia activity recall for children and adolescents. Pediatr. Exerc. Sci. 2010, 22, 34–43. [Google Scholar] [CrossRef]
- Tudor-Locke, C.; Craig, C.L.; Brown, W.J.; Clemes, S.A.; De Cocker, K.; Giles-Corti, B.; Hatano, Y.; Inoue, S.; Matsudo, S.M.; Mutrie, N.; et al. How many steps/day are enough? For adults. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chillón, P.; Panter, J.; Corder, K.; Jones, A.; Van Sluijs, E. A longitudinal study of the distance that young people walk to school. Health Place 2015, 31, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Merom, D.; Tudor- Locke, C.; Bauman, A.; Rissel, C. Active commuting to school among NSW primary school children: Implications for public health. Health Place 2006, 12, 678–687. [Google Scholar] [CrossRef] [PubMed]
- Ridley, K.; Zabeen, S.; Lunnay, B.K. Children’s physical activity levels during organised sports practices. J. Sci. Med. Sport 2018, 21, 930–934. [Google Scholar] [CrossRef]
- Shephard, R.J. Is active commuting the answer to population health? Sport. Med. 2008, 38, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Gjestvang, C.; Stensrud, T.; Hansen, B.H.; Kolle, E.; Haakstad, L.A. Are fitness club members likely to meet the current physical activity recommendations? Transl. Sport. Med. 2020, 3, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Tudor-Locke, C.; Bassett, D.R. How many steps/day are enough? Sport. Med. 2004, 34, 1–8. [Google Scholar] [CrossRef]
- Attal, F.; Mohammed, S.; Dedabrishvili, M.; Chamroukhi, F.; Oukhellou, L.; Amirat, Y. Physical Human Activity Recognition Using Wearable Sensors. Sensors 2015, 15, 31314–31338. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.; Brown, W.; Tudor-Locke, C. But what about swimming and cycling? How to “count” non-ambulatory activity when using pedometers to assess physical activity. J. Phys. Act. Health 2006, 3, 257–266. [Google Scholar] [CrossRef] [PubMed]
Day Hour | Total Number of Steps |
---|---|
1 November 2021 08:00 | 390 |
1 November 2021 09:00 | 564 |
1 November 2021 10:00 | 1046 |
… | … |
Day and Hour | Step Number Difference | Type of Behaviour Change Detected |
---|---|---|
11 November 2021 11:00 | −956 | Negative |
15 November 2021 15:00 | 2300 | Positive |
15 November 2021 17:00 | 1549 | Positive |
… | … |
First Day and Hour | Last Day | Type of Habit |
---|---|---|
16 November 2021 13:00 | 18 November 2021 | Positive |
18 November 2021 14:00 | 19 November 2021 | Positive |
21 November 2021 08:00 | 25 November 2021 | Negative |
… | … |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diaz, C.; Caillaud, C.; Yacef, K. Unsupervised Early Detection of Physical Activity Behaviour Changes from Wearable Accelerometer Data. Sensors 2022, 22, 8255. https://doi.org/10.3390/s22218255
Diaz C, Caillaud C, Yacef K. Unsupervised Early Detection of Physical Activity Behaviour Changes from Wearable Accelerometer Data. Sensors. 2022; 22(21):8255. https://doi.org/10.3390/s22218255
Chicago/Turabian StyleDiaz, Claudio, Corinne Caillaud, and Kalina Yacef. 2022. "Unsupervised Early Detection of Physical Activity Behaviour Changes from Wearable Accelerometer Data" Sensors 22, no. 21: 8255. https://doi.org/10.3390/s22218255
APA StyleDiaz, C., Caillaud, C., & Yacef, K. (2022). Unsupervised Early Detection of Physical Activity Behaviour Changes from Wearable Accelerometer Data. Sensors, 22(21), 8255. https://doi.org/10.3390/s22218255