Design and Haemodynamic Analysis of a Novel Anchoring System for Central Venous Pressure Measurement
Abstract
:1. Introduction
1.1. Central Venous Pressure (CVP): A Potential Metric for HF Monitoring
1.2. Modes of CVP Measurement
- CVP measurements targeting inferior vena cava (IVC) as a potential site of interest remains unexplored.
- Current sensor anchoring methods, which are effective for other arteries e.g., pulmonary artery, may fail to hold the sensor safely in place in the physically more challenging environment of the IVC (as it is a thin and compliant vessel with a smaller diameter as compared with the arteries).
- Significant physical and functional adaptation of existing haemodynamic sensors is required for a safe and effective implant in the IVC.
1.2.1. Importance of Anchoring in the IVC
1.2.2. Design Challenges of Existing Implants in the Venous System
2. Methods and Materials
2.1. Selection of Optimal Site for Accommodation of the Anchor
2.2. Anchor Fabrication
2.3. Bench Test Procedure
2.4. Device Design Parameters and CAD Modelling
2.5. Computational Modeling
2.6. Haemodynamic Parameters
3. Results
3.1. Anchor Deployment and Compression Tests
3.2. CFD Analysis
3.2.1. Velocity Profiles
3.2.2. Haemodynamic Parameters
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Blecker, S.; Paul, M.; Taksler, G.; Ogedegbe, G.; Katz, S. Heart Failure–Associated Hospitalizations in the United States. J. Am. Coll. Cardiol. 2013, 61, 1259–1267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zannad, F.; Agrinier, N.; Alla, F. Heart failure burden and therapy. Europace 2009, 11 (Suppl. S5), v1–v9. [Google Scholar] [CrossRef] [PubMed]
- Ambrosy, A.P.; Fonarow, G.C.; Butler, J.; Chioncel, O.; Greene, S.J.; Vaduganathan, M.; Nodari, S.; Lam, C.S.; Sato, N.; Shah, A.N.; et al. The Global Health and Economic Burden of Hospitalizations for Heart Failure: Lessons learned from hospitalized heart failure registries. J. Am. Coll. Cardiol. 2014, 63, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Heart Failure—HSE.ie. Available online: https://www.hse.ie/eng/health/hl/living/heartfailure/ (accessed on 16 August 2022).
- From Crisis to Control: A Cohesive Strategy for Hospital Management of Heart Failure in Ireland from Crisis to Control: A Cohesive Strategy for Hospital Management of Heart Failure in Ireland Introduction. 2022. Available online: http://hdl.handle.net/10147/310925 (accessed on 16 August 2022).
- Inglis, S.C.; Clark, R.A.; McAlister, F.A.; Ball, J.; Lewinter, C.; Cullington, D.; Stewart, S.; Cleland, J.G.F. Structured telephone support or telemonitoring programmes for patients with chronic heart failure. Cochrane Database Syst. Rev. 2010, 8, CD007228. [Google Scholar] [CrossRef] [Green Version]
- Klersy, C.; De Silvestri, A.; Gabutti, G.; Regoli, F.; Auricchio, A. A Meta-Analysis of Remote Monitoring of Heart Failure Patients. J. Am. Coll. Cardiol. 2009, 54, 1683–1694. [Google Scholar] [CrossRef] [Green Version]
- Mohebali, D.; Kittleson, M.M. Remote monitoring in heart failure: Current and emerging technologies in the context of the pandemic. Heart 2021, 107, 366–372. [Google Scholar] [CrossRef]
- Gheorghiade, M.; Filippatos, G.; De Luca, L.; Burnett, J. Congestion in Acute Heart Failure Syndromes: An Essential Target of Evaluation and Treatment. Am. J. Med. 2006, 119, S3–S10. [Google Scholar] [CrossRef]
- Adamson, P.B.; Magalski, A.; Braunschweig, F.; Böhm, M.; Reynolds, D.; Steinhaus, D.; Luby, A.; Linde, C.; Ryden, L.; Cremers, B.; et al. Ongoing right ventricular haemodynamics in heart failure: Clinical value of measurements derived from an implantable monitoring system. J. Am. Coll. Cardiol. 2003, 41, 565–571. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.-M.; Wang, L.; Chau, E.; Chan, R.H.-W.; Kong, S.-L.; Tang, M.-O.; Christensen, J.; Stadler, R.W.; Lau, C.-P. Intrathoracic Impedance Monitoring in Patients with Heart Failure: Correlation with fluid status and feasibility of early warning preceding hospitalization. Circulation 2005, 112, 841–848. [Google Scholar] [CrossRef] [Green Version]
- Chaudhry, S.I.; Wang, Y.; Concato, J.; Gill, T.; Krumholz, H.M. Patterns of Weight Change Preceding Hospitalization for Heart Failure. Circulation 2007, 116, 1549–1554. [Google Scholar] [CrossRef]
- Cotter, G.; Metra, M.; Milo-Cotter, O.; Dittrich, H.C.; Gheorghiade, M. Fluid overload in acute heart failure—Re-distribution and other mechanisms beyond fluid accumulation. Eur. J. Heart Fail. 2008, 10, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Milo-Cotter, O.; Adams, K.F.; O’Connor, C.M.; Uriel, N.; Kaluski, E.; Felker, G.M.; Weatherley, B.; Vered, Z.; Cotter, G. Acute heart failure associated with high admission blood pressure—A distinct vascular disorder? Eur. J. Heart Fail. 2007, 9, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Firth, J.; Raine, A.; Ledingham, J. Raised Venous Pressure: A direct cause of renal sodium retention in oedema? Lancet 1988, 331, 1033–1036. [Google Scholar] [CrossRef]
- Mullens, W.; Abrahams, Z.; Skouri, H.N.; Francis, G.S.; Taylor, D.O.; Starling, R.C.; Paganini, E.; Tang, W.W. Elevated Intra-Abdominal Pressure in Acute Decompensated Heart Failure: A Potential Contributor to Worsening Renal Function? J. Am. Coll. Cardiol. 2008, 51, 300–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anand, I.S. Cardiorenal Syndrome: A Cardiologist’s Perspective of Pathophysiology. Clin. J. Am. Soc. Nephrol. 2013, 8, 1800–1807. [Google Scholar] [CrossRef] [Green Version]
- Schrier, R.W.; Abraham, W.T. Hormones and Hemodynamics in Heart Failure. N. Engl. J. Med. 1999, 341, 577–585. [Google Scholar] [CrossRef]
- Senni, M. Prognostic importance of elevated jugular venous pressure and a third heart sound in patients with heart failure. Ital. Heart J. Suppl. 2001, 2, 1250–1251. [Google Scholar] [CrossRef]
- Abraham, W.T.; Adamson, P.B.; Bourge, R.C.; Aaron, M.F.; Costanzo, M.R.; Stevenson, L.W.; Strickland, W.; Neelagaru, S.; Raval, N.; Krueger, S.; et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: A randomised controlled trial. Lancet 2011, 377, 658–666. [Google Scholar] [CrossRef]
- Teichgräber, U.K.; Gebauer, B.; Benter, T.; Wagner, H.J. Central venous access catheters: Radiological management of complications. Cardiovasc. Intervent. Radiol. 2003, 26, 321–333. Available online: https://www.academia.edu/23895351/Central_venous_access_catheters_radiological_management_of_complications (accessed on 17 October 2022).
- Jauch, K.W.; Schregel, W.; Stanga, Z.; Bischoff, S.C.; Braß, P.; Hartl, W.; Muehlebach, S.; Pscheidl, E.; Thul, P.; Volk, O. Access technique and its problems in parenteral nutrition—Guidelines on Parenteral Nutrition, Chapter 9. Ger. Med. Sci. 2009, 7, 0078. [Google Scholar] [CrossRef]
- Mathai, A.S.; Kaur, R.; Abraham, J. Mechanical and infectious complications of central venous catheterizations in a tertiary-level intensive care unit in northern India. Indian J. Anaesth. 2012, 56, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Ruesch, S.; Walder, B.; Tramèr, M.R. Complications of central venous catheters: Internal jugular versus subclavian access—A systematic review. Crit. Care Med. 2002, 30, 454–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correlation of Peripheral Venous Pressure and Central Venous Pressure in Surgical Patients|Read by QxMD. Available online: https://read.qxmd.com/read/11254838/correlation-of-peripheral-venous-pressure-and-central-venous-pressure-in-surgical-patients (accessed on 17 October 2022).
- Charalambous, C.; Barker, T.A.; Zipitis, C.S.; Siddique, I.; Swindell, R.; Jackson, R.; Benson, J. Comparison of Peripheral and Central Venous Pressures in Critically Ill Patients. Anaesth. Intensiv. Care 2003, 31, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Nagaraja, P.; Sathish, N.; Singh, N.G.; Sarala, B.; Prabhushankar, C.; Dhananjaya, M.; Manjunatha, N. Comparison between noninvasive measurement of central venous pressure using near infrared spectroscopy with an invasive central venous pressure monitoring in cardiac surgical Intensive Care Unit. Ann. Card. Anaesth. 2016, 19, 405–409. [Google Scholar] [CrossRef]
- Marcelli, E.; Cercenelli, L.; Bortolani, B.; Marini, S.; Arfilli, L.; Capucci, A.; Plicchi, G. A Novel Non-Invasive Device for the Assessment of Central Venous Pressure in Hospital, Office and Home. Med. Devices 2021, 14, 141–154. [Google Scholar] [CrossRef]
- Porter, T.R.; Shillcutt, S.K.; Adams, M.S.; Desjardins, G.; Glas, K.E.; Olson, J.J.; Troughton, R.W. Guidelines for the Use of Echocardiography as a Monitor for Therapeutic Intervention in Adults: A Report from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2015, 28, 40–56. [Google Scholar] [CrossRef]
- Gropper, M.; Eriksson, L.; Fleisher, L.; Wiener-Kronish, J.; Cohen, N.; Leslie, K. Miller’s Anesthesia, 2-Volume Set; E-Book—Google Books; Elsevier: Amsterdam, The Netherlands, 2019; Available online: https://www.elsevier.com/books/millers-anesthesia-2-volume-set/gropper/978-0-323-59604-6 (accessed on 13 September 2022).
- Fiachra, M. Implantable Sensors for Vascular Monitoring Sweeney; Foundry Innovation & Research, Ltd.: Dublin, Ireland, 2020; Available online: https://uspto.report/patent/app/20200129087 (accessed on 17 October 2022).
- Feng, H.; Wang, S.; Wang, Y.; Li, X.; Wang, X. Study on mechanical properties of nitinol iliac vein stent and animal test under different release scales. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2019, 36, 1024–1031. [Google Scholar]
- Fisher, R.G.; Ferreyro, R. Evaluation of current techniques for nonsurgical removal of intravascular iatrogenic foreign bodies. Am. J. Roentgenol. 1978, 130, 541–548. Available online: www.ajronline.org (accessed on 17 October 2022). [CrossRef]
- Neglén, P.; Hollis, K.C.; Olivier, J.; Raju, S. Stenting of the venous outflow in chronic venous disease: Long-term stent-related outcome, clinical, and haemodynamic result. J. Vasc. Surg. 2007, 46, 979–990.e1. [Google Scholar] [CrossRef] [Green Version]
- Khairy, S.; Neves, R.; Hartung, O.; O’Sullivan, G. Factors Associated with Contralateral Deep Venous Thrombosis after Iliocaval Venous Stenting. Eur. J. Vasc. Endovasc. Surg. 2017, 54, 745–751. [Google Scholar] [CrossRef] [Green Version]
- Alsheekh, A.; Hingorani, A.; Aurshina, A.; Kibrik, P.; Chait, J.; Ascher, E. Iliac Vein Stent Placement and the Iliocaval Confluence. Ann. Vasc. Surg. 2019, 63, 307–310. [Google Scholar] [CrossRef] [PubMed]
- El Feghaly, M.M.; Soula, P.; Rousseau, H.; Chaiban, F.; Otal, P.; Joffre, F.; Cerene, A. Technical notes. J. Franklin Inst. 1895, 140, 480–481. [Google Scholar] [CrossRef]
- Vedantham, S.; Piazza, G.; Sista, A.K.; Goldenberg, N.A. Guidance for the use of thrombolytic therapy for the treatment of venous thromboembolism. J. Thromb. Thrombolysis 2016, 41, 68–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Ha, T.G. Complications of Inferior Vena Caval Filters. Semin. Interv. Radiol. 2006, 23, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Millward, S.F.; Peterson, R.A.; Moher, D.; LewandowskI, B.J.; BurbrIdge, B.E.; AquIno, J.; Formoso, A. LGM (Vena Tech) vena caval filter: Experience at a single institution. J. Vasc. Interv. Radiol. 1994, 5, 351–356. Available online: https://www.academia.edu/26603444/LGM_Vena_Tech_Vena_Caval_Filter_Experience_at_a_Single_Institution (accessed on 16 August 2022). [CrossRef]
- Patel, S.H.; Patel, R. Inferior vena cava filters for recurrent thrombosis: Current evidence. Tex. Heart Inst. J. 2007, 34, 187–194. [Google Scholar]
- Durack, J.C.; Westphalen, A.C.; Kekulawela, S.; Bhanu, S.B.; Avrin, D.E.; Gordon, R.L.; Kerlan, R.K. Perforation of the IVC: Rule Rather Than Exception After Longer Indwelling Times for the Günther Tulip and Celect Retrievable Filters. Cardiovasc. Interv. Radiol. 2011, 35, 299–308. [Google Scholar] [CrossRef]
- Young, L.; Kwon, J.; Arosemena, M.; Salvatore, D.; Dimuzio, P.; Abai, B. Symptomatic compression of right iliac vein after right iliac artery stent placement. J. Vasc. Surg. Venous Lymphat. Disord. 2017, 5, 735–738. [Google Scholar] [CrossRef]
- Manavi, T.; Vazquez, P.; Tubassam, M.; Zafar, J.; Sharif, F.; Zafar, H. Determination of optimal implantation site in central venous system for wireless hemodynamic monitoring. IJC Heart. Vasc. 2020, 27, 100510. [Google Scholar] [CrossRef]
- Szymczyk, T.; Sauzet, O.; Paluszkiewicz, L.J.; Costard-Jäckle, A.; Potratz, M.; Rudolph, V.; Gummert, J.F.; Fox, H. Non-invasive assessment of central venous pressure in heart failure: A systematic prospective comparison of echocardiography and Swan-Ganz catheter. Int. J. Cardiovasc. Imaging 2020, 36, 1821–1829. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Z.; Deng, X.; Yang, S.; Tan, W.; Fan, Y.; Han, Y.; Xing, Y. Effects of reverse deployment of cone-shaped vena cava filter on improvements in hemodynamic performance in vena cava. Biomed. Eng. Online 2021, 20, 19. [Google Scholar] [CrossRef]
- Hammoud, A.; Sharay, E.Y.; Tikhomirov, A.N. Newtonian and non-Newtonian pulsatile flows through carotid artery bifurcation based on CT image geometry articles you may be interested in Newtonian and Non-Newtonian Pulsatile Flows through carotid artery bifurcation based on CT image geometry. AIP Conf. Proc. 2019, 2171, 110022. [Google Scholar] [CrossRef]
- Liu, H.; Lan, L.; Abrigo, J.; Ip, H.L.; Soo, Y.; Zheng, D.; Wong, K.S.; Wang, D.; Shi, L.; Leung, T.W.; et al. Comparison of Newtonian and Non-newtonian Fluid Models in Blood Flow Simulation in Patients with Intracranial Arterial Stenosis. Front. Physiol. 2021, 12, 718540. [Google Scholar] [CrossRef] [PubMed]
- Bernabeu, M.O.; Nash, R.W.; Groen, D.; Carver, H.B.; Hetherington, J.; Krüger, T.; Coveney, P.V. Impact of blood rheology on wall shear stress in a model of the middle cerebral artery. Interface Focus 2013, 3, 20120094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyd, J.; Buick, J.M.; Green, S. Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flows using the lattice Boltzmann method. Phys. Fluids 2007, 19, 093103. [Google Scholar] [CrossRef] [Green Version]
- Suess, T.; Anderson, J.; Danielson, L.; Pohlson, K.; Remund, T.; Blears, E.; Gent, S.; Kelly, P. Examination of near-wall hemodynamic parameters in the renal bridging stent of various stent graft configurations for repairing visceral branched aortic aneurysms. J. Vasc. Surg. 2015, 64, 788–796. [Google Scholar] [CrossRef] [Green Version]
- Mullens, W.; Sharif, F.; Dupont, M.; Rothman, A.M.; Wijns, W. Digital health care solution for proactive heart failure management with the Cordella Heart Failure System: Results of the SIRONA first-in-human study. Eur. J. Heart Fail. 2020, 22, 1912–1919. [Google Scholar] [CrossRef] [PubMed]
- Magder, S. Right Atrial Pressure in the Critically Ill: How to Measure, What Is the Value, What Are the Limitations? Chest 2017, 151, 908–916. [Google Scholar] [CrossRef]
- Legrand, M.; Dupuis, C.; Simon, C.; Gayat, E.; Mateo, J.; Lukaszewicz, A.C.; Payen, D. Association between systemic haemodynamics and septic acute kidney injury in critically ill patients: A retrospective observational study. Crit. Care 2013, 17, R278. [Google Scholar] [CrossRef] [Green Version]
- Wittich, G.R.; Goodacre, B.W.; Kennedy, P.T.; Mathew, P. Anchoring a Migrating Inferior Vena Cava Stent with Use of a T-Fastener. J. Vasc. Interv. Radiol. 2001, 12, 994–996. [Google Scholar] [CrossRef]
- Jia, Z.; Wu, A.; Tam, M.; Spain, J.; McKinney, J.M.; Wang, W. Caval Penetration by Inferior Vena Cava Filters. Circulation 2015, 132, 944–952. [Google Scholar] [CrossRef] [PubMed]
- Shamimi-Noori, S.M.; Clark, T.W. Venous Stents: Current Status and Future Directions. Tech. Vasc. Interv. Radiol. 2018, 21, 113–116. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manavi, T.; Ijaz, M.; O’Grady, H.; Nagy, M.; Martina, J.; Finucane, C.; Sharif, F.; Zafar, H. Design and Haemodynamic Analysis of a Novel Anchoring System for Central Venous Pressure Measurement. Sensors 2022, 22, 8552. https://doi.org/10.3390/s22218552
Manavi T, Ijaz M, O’Grady H, Nagy M, Martina J, Finucane C, Sharif F, Zafar H. Design and Haemodynamic Analysis of a Novel Anchoring System for Central Venous Pressure Measurement. Sensors. 2022; 22(21):8552. https://doi.org/10.3390/s22218552
Chicago/Turabian StyleManavi, Tejaswini, Masooma Ijaz, Helen O’Grady, Michael Nagy, Jerson Martina, Ciaran Finucane, Faisal Sharif, and Haroon Zafar. 2022. "Design and Haemodynamic Analysis of a Novel Anchoring System for Central Venous Pressure Measurement" Sensors 22, no. 21: 8552. https://doi.org/10.3390/s22218552
APA StyleManavi, T., Ijaz, M., O’Grady, H., Nagy, M., Martina, J., Finucane, C., Sharif, F., & Zafar, H. (2022). Design and Haemodynamic Analysis of a Novel Anchoring System for Central Venous Pressure Measurement. Sensors, 22(21), 8552. https://doi.org/10.3390/s22218552