Past, Present and Future of Research on Wearable Technologies for Healthcare: A Bibliometric Analysis Using Scopus
Abstract
:1. Introduction
- General Research Question: How has the scientific production published in Scopus within the research field of wearable technologies for health monitoring evolved over the last two decades?
- -
- Specific Research Question (SRQ) 1: How many specific publications are there on this subject in Scopus and what trends can be observed?
- -
- SRQ 2: What countries and institutions produce most of this research?
- -
- SRQ 3: Which are the most active journals based on the objectives of this research and the relationship between them?
- -
- SRQ 4: Who are the most relevant authors based on the search strategy proposed in this analysis and the co-citation between them?
- -
- SRQ 5: What are the most significant key concepts and how have they evolved over the years?
2. Literature Review
2.1. Definition, Characteristics and Opportunities of Wearable Technologies
- (1)
- Wearable smart devices should not significantly change people’s habits or usual way of life while they are in use.
- (2)
- These devices perform specific functions and must collect data through sensors without the user being aware and without requiring their direct intervention.
- (3)
- They must have the ability to communicate with external devices mediated by the use of any communication technology.
- (4)
- Wearable smart devices must be able to communicate and analyze to achieve their intended functions.
- -
- -
- Marketing and “geographic market intelligence” (GeoMarketing): offering products and services in an innovative and creative way [43].
- -
2.2. Types of Wearable Technologies and Business Devices
2.3. Previous Research and Results Achieved
3. Methods
3.1. Search Strategy
3.2. Selection Study and Inclusion Criteria
3.3. Data Analysis
- (1)
- Publication outputs and development trend.
- (2)
- Analysis of countries and keywords: (1) visualization of collaborative networks; (2) history of the burstiness of keywords; (3) diagram pennant of concepts and (4) timeline plot for publications. CiteSpace 5.7.R2 (64 bit) software.
- (3)
- Analysis of authors, co-cited authors, journals and keywords: link strength analysis and cluster views. VOSviewer software version 1.6.15.
- (4)
- Ranking of the most active subject areas: Microsoft Excel 2016.
4. Results
4.1. Results of the Search and Selection of Studies
4.2. Publication Outputs and Development Trend
4.3. Analysis of Countries and Institutions
4.4. Journal Analysis
4.5. Analysis of Authors and Co-cited Authors
4.6. The Keyword Co-Occurrence Network
5. Discussion
- (1)
- Orthopedic biology
- (2)
- Wearable technologies
- (3)
- 3D printing
- (4)
- Smart and functional materials
- (5)
- Smart textiles
- -
- Circulating nanosensors for continuous drug monitoring.
- -
- Smart textiles for the prevention of deep vein thrombosis.
- -
- Inexpensive genetic sensors for zinc deficiency.
5.1. Limitations
5.2. Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boogerd, E.A.; Arts, T.; Engelen, L.J.; van de Belt, T.H. “What Is EHealth”: Time for An Update? JMIR Res. Protoc. 2015, 4, e29. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Observatory for EHealth; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Quinn, C.C.; Shardell, M.D.; Terrin, M.L.; Barr, E.A.; Ballew, S.H.; Gruber-Baldini, A.L. Cluster-Randomized Trial of a Mobile Phone Personalized Behavioral Intervention for Blood Glucose Control. Diabetes Care 2011, 34, 1934–1942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Seventy-First World Health Assembly. In Proceedings of the 71st Session of the World Health Assembly, Geneva, Switzerland, 21–26 May 2018. [Google Scholar]
- Spencer, J. The Sustainable Development Goals. In Design for Global Challenges and Goals; Routledge: Abingdon, UK, 2021; pp. 12–25. [Google Scholar]
- European Commission. EHealth Action Plan 2012–2020—Innovative Healthcare for the 21st Century; European Commission: 2012. Available online: https://health.ec.europa.eu/publications/ehealth-action-plan-2012-2020_en (accessed on 19 September 2022).
- United Nations. World Population Ageing 2019; United Nations: New York, NY, USA, 2019; ISBN 9789211483260. [Google Scholar]
- Rutherford, J.J. Wearable Technology. IEEE Eng. Med. Biol. Mag. 2010, 29, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Willy, R.W. Innovations and Pitfalls in the Use of Wearable Devices in the Prevention and Rehabilitation of Running Related Injuries. Phys. Ther. Sport 2018, 29, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.T.; Treskes, R.W.; Caiani, E.G.; Casado-Arroyo, R.; Cowie, M.R.; Dilaveris, P.; Duncker, D.; di Rienzo, M.; Frederix, I.; de Groot, N.; et al. ESC Working Group on E-Cardiology Position Paper: Use of Commercially Available Wearable Technology for Heart Rate and Activity Tracking in Primary and Secondary Cardiovascular Prevention—In Collaboration with the European Heart Rhythm Association, European Association of Preventive Cardiology, Association of Cardiovascular Nursing and Allied Professionals, Patient Forum, and the Digital Health Committee. Eur. Heart J. Digit. Health 2021, 2, 49–59. [Google Scholar] [CrossRef]
- Genovese, V.; Mannini, A.; Guaitolini, M.; Sabatini, A. Wearable Inertial Sensing for ICT Management of Fall Detection, Fall Prevention, and Assessment in Elderly. Technologies 2018, 6, 91. [Google Scholar] [CrossRef] [Green Version]
- Sopic, D.; Aminifar, A.; Aminifar, A.; Atienza, D. Real-Time Event-Driven Classification Technique for Early Detection and Prevention of Myocardial Infarction on Wearable Systems. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 982–992. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Li, H.; Li, A.R.; Zhang, H. Wearable IMU-Based Real-Time Motion Warning System for Construction Workers’ Musculoskeletal Disorders Prevention. Autom. Constr. 2017, 74, 2–11. [Google Scholar] [CrossRef]
- Dervisevic, M.; Alba, M.; Prieto-Simon, B.; Voelcker, N.H. Skin in the Diagnostics Game: Wearable Biosensor Nano- and Microsystems for Medical Diagnostics. Nano. Today 2020, 30, 100828. [Google Scholar] [CrossRef]
- de Castro, L.F.; de Freitas, S.V.; Duarte, L.C.; de Souza, J.A.C.; Paixão, T.R.L.C.; Coltro, W.K.T. Salivary Diagnostics on Paper Microfluidic Devices and Their Use as Wearable Sensors for Glucose Monitoring. Anal. Bioanal. Chem. 2019, 411, 4919–4928. [Google Scholar] [CrossRef]
- Le, V.T.; Muhlestein, J.B. Use of Wearable Technologies for Early Diagnosis and Management of Acute Coronary Syndromes and Arrhythmias. Curr. Cardiovasc. Risk Rep. 2018, 12, 24. [Google Scholar] [CrossRef]
- Kwon, Y.; Lee, Y.; Berkmen, G.K.; Lim, H.; Scorr, L.; Jinnah, H.A.; Yeo, W. Soft Material-Enabled, Active Wireless, Thin-Film Bioelectronics for Quantitative Diagnostics of Cervical Dystonia. Adv. Mater. Technol. 2019, 4, 1900458. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, M.M.; Alon, G.; Pai, V.M.; Conroy, R.S. Wearable Technologies for Active Living and Rehabilitation: Current Research Challenges and Future Opportunities. J. Rehabil. Assist. Technol. Eng. 2019, 6, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rashid, A.; Hasan, O. Wearable Technologies for Hand Joints Monitoring for Rehabilitation: A Survey. Microelectron. J. 2019, 88, 173–183. [Google Scholar] [CrossRef]
- Maria, A.R.; Sever, P.; George, S. MIoT Applications for Wearable Technologies Used for Health Monitoring. In Proceedings of the 2018 10th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Iasi, Romania, 28–30 June 2018; pp. 1–4. [Google Scholar]
- Ming, D.K.; Sangkaew, S.; Chanh, H.Q.; Nhat, P.T.H.; Yacoub, S.; Georgiou, P.; Holmes, A.H. Continuous Physiological Monitoring Using Wearable Technology to Inform Individual Management of Infectious Diseases, Public Health and Outbreak Responses. Int. J. Infect. Dis. 2020, 96, 648–654. [Google Scholar] [CrossRef]
- Jalloul, N. Wearable Sensors for the Monitoring of Movement Disorders. Biomed. J. 2018, 41, 249–253. [Google Scholar] [CrossRef]
- Li, J.; Ma, Q.; Chan, A.H.; Man, S.S. Health Monitoring through Wearable Technologies for Older Adults: Smart Wearables Acceptance Model. Appl. Ergon. 2019, 75, 162–169. [Google Scholar] [CrossRef]
- Ramkumar, P.N.; Haeberle, H.S.; Ramanathan, D.; Cantrell, W.A.; Navarro, S.M.; Mont, M.A.; Bloomfield, M.; Patterson, B.M. Remote Patient Monitoring Using Mobile Health for Total Knee Arthroplasty: Validation of a Wearable and Machine Learning–Based Surveillance Platform. J. Arthroplast. 2019, 34, 2253–2259. [Google Scholar] [CrossRef]
- Kaliyaperumal, D.; RK, K.; Alagesan, M.; Ramalingam, S. Characterization of Cardiac Autonomic Function in COVID-19 Using Heart Rate Variability: A Hospital Based Preliminary Observational Study. J. Basic Clin. Physiol. Pharmacol. 2021, 32, 247–253. [Google Scholar] [CrossRef]
- Hijazi, H.; Abu Talib, M.; Hasasneh, A.; Bou Nassif, A.; Ahmed, N.; Nasir, Q. Wearable Devices, Smartphones, and Interpretable Artificial Intelligence in Combating COVID-19. Sensors 2021, 21, 8424. [Google Scholar] [CrossRef]
- Albín-Rodríguez, A.-P.; Ricoy-Cano, A.-J.; de-la-Fuente-Robles, Y.-M.; Espinilla-Estévez, M. Fuzzy Protoform for Hyperactive Behaviour Detection Based on Commercial Devices. Int. J. Environ. Res. Public Health 2020, 17, 6752. [Google Scholar] [CrossRef] [PubMed]
- Di Palma, S.; Tonacci, A.; Narzisi, A.; Domenici, C.; Pioggia, G.; Muratori, F.; Billeci, L. Monitoring of Autonomic Response to Sociocognitive Tasks during Treatment in Children with Autism Spectrum Disorders by Wearable Technologies: A Feasibility Study. Comput. Biol. Med. 2017, 85, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Billeci, L.; Tonacci, A.; Tartarisco, G.; Narzisi, A.; di Palma, S.; Corda, D.; Baldus, G.; Cruciani, F.; Anzalone, S.M.; Calderoni, S.; et al. An Integrated Approach for the Monitoring of Brain and Autonomic Response of Children with Autism Spectrum Disorders during Treatment by Wearable Technologies. Front. Neurosci. 2016, 10, 276. [Google Scholar] [CrossRef] [Green Version]
- Elgendi, M.; Menon, C. Assessing Anxiety Disorders Using Wearable Devices: Challenges and Future Directions. Brain Sci. 2019, 9, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matzeu, G.; Florea, L.; Diamond, D. Advances in Wearable Chemical Sensor Design for Monitoring Biological Fluids. Sens. Actuators B Chem. 2015, 211, 403–418. [Google Scholar] [CrossRef]
- Parrilla, M.; de Wael, K. Wearable Self-Powered Electrochemical Devices for Continuous Health Management. Adv. Funct. Mater. 2021, 31, 2107042. [Google Scholar] [CrossRef]
- Senf, B.; Yeo, W.-H.; Kim, J.-H. Recent Advances in Portable Biosensors for Biomarker Detection in Body Fluids. Biosensors 2020, 10, 127. [Google Scholar] [CrossRef]
- Koh, A.; Kang, D.; Xue, Y.; Lee, S.; Pielak, R.M.; Kim, J.; Hwang, T.; Min, S.; Banks, A.; Bastien, P.; et al. A Soft, Wearable Microfluidic Device for the Capture, Storage, and Colorimetric Sensing of Sweat. Sci. Transl. Med. 2016, 8, 366ra165. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Park, W.; Lee, C.H. Electrochemically Active Materials and Wearable Biosensors for the in Situ Analysis of Body Fluids for Human Healthcare. NPG Asia Mater. 2021, 13, 23. [Google Scholar] [CrossRef]
- Wright, R.; Keith, L. Wearable Technology: If the Tech Fits, Wear It. J. Electron. Resour. Med. Libr. 2014, 11, 204–216. [Google Scholar] [CrossRef]
- Iqbal, M.H.; Aydin, A.; Brunckhorst, O.; Dasgupta, P.; Ahmed, K. A Review of Wearable Technology in Medicine. J. R. Soc. Med. 2016, 109, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Han, S.C.; Han, Y.-H.; Kim, H.S. Characteristics and Perspectives of Wearable Smart Devices and Industrial Ecosystem. In Proceedings of the 2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS), Hsinchu, Taiwan, 16–19 December 2014; pp. 911–914. [Google Scholar]
- Motti, V.G. Introduction to Wearable Computers. In Wearable Interaction; Springer: Cham, Switzerland, 2020; pp. 1–39. [Google Scholar]
- Pitt, L.; Kietzmann, J.; Robson, K.; Plangger, K.; Treen, E.; Paschen, J.; Hannah, D. Understanding the Opportunities and Challenges of Wearable Technology. In Creating Marketing Magic and Innovative Future Marketing Trends; Springer: Cham, Switzerland, 2017; pp. 139–141. [Google Scholar]
- Pavón, I.; Sigcha, L.; Arezes, P.; Costa, N.; Arcas, G.; López, N. Wearable Technology for Occupational Risk Assessment: Potential Avenues for Applications. In Occupational Safety and Hygiene VI; CRC Press: Boca Raton, FL, USA, 2018; pp. 447–452. [Google Scholar]
- Khakurel, J.; Melkas, H.; Porras, J. Tapping into the Wearable Device Revolution in the Work Environment: A Systematic Review. Inf. Technol. People 2018, 31, 791–818. [Google Scholar] [CrossRef] [Green Version]
- Guarda, T.; Augusto, M.F.; Lopes, I. Geographic Market Intelligence as a Competitive Advantage. In Proceedings of the 2019 14th Iberian Conference on Information Systems and Technologies (CISTI), Coimbra, Portugal, 19–22 June 2019; pp. 1–5. [Google Scholar]
- Liang, J.-M.; Su, W.-C.; Chen, Y.-L.; Wu, S.-L.; Chen, J.-J. Smart Interactive Education System Based on Wearable Devices. Sensors 2019, 19, 3260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, S. Geosurveillance, Location Privacy, and Personalization. J. Public Policy Mark. 2019, 38, 484–499. [Google Scholar] [CrossRef]
- Seneviratne, S.; Hu, Y.; Nguyen, T.; Lan, G.; Khalifa, S.; Thilakarathna, K.; Hassan, M.; Seneviratne, A. A Survey of Wearable Devices and Challenges. IEEE Commun. Surv. Tutor. 2017, 19, 2573–2620. [Google Scholar] [CrossRef]
- Dehghani, M.; Kim, K.J. Past and Present Research on Wearable Technologies: Bibliometric and Cluster Analyses of Published Research from 2000 to 2016. Int. J. Innov. Technol. Manag. 2019, 16, 1950007. [Google Scholar] [CrossRef]
- Ferreira, J.J.; Fernandes, C.I.; Rammal, H.G.; Veiga, P.M. Wearable Technology and Consumer Interaction: A Systematic Review and Research Agenda. Comput. Hum. Behav. 2021, 118, 106710. [Google Scholar] [CrossRef]
- Pevnick, J.M.; Birkeland, K.; Zimmer, R.; Elad, Y.; Kedan, I. Wearable Technology for Cardiology: An Update and Framework for the Future. Trends Cardiovasc. Med. 2018, 28, 144–150. [Google Scholar] [CrossRef]
- Oliver, N.; Flores-Mangas, F. HealthGear: A Real-Time Wearable System for Monitoring and Analyzing Physiological Signals. In Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks (BSN’06), Cambridge, MA, USA, 3–5 April 2006; pp. 61–64. [Google Scholar]
- Aliverti, A. Wearable Technology: Role in Respiratory Health and Disease. Breathe 2017, 13, e27–e36. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.Z.-H.; Ling, Y.T.; Shea, Q.T.K.; Wang, L.-K.; Wang, X.-Y.; Zheng, Y.-P. Towards Wearable Comprehensive Capture and Analysis of Skeletal Muscle Activity during Human Locomotion. Sensors 2019, 19, 195. [Google Scholar] [CrossRef]
- Cormack, F.; McCue, M.; Taptiklis, N.; Skirrow, C.; Glazer, E.; Panagopoulos, E.; van Schaik, T.A.; Fehnert, B.; King, J.; Barnett, J.H. Wearable Technology for High-Frequency Cognitive and Mood Assessment in Major Depressive Disorder: Longitudinal Observational Study. JMIR Ment. Health 2019, 6, e12814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranganathan, R.; Wang, R.; Dong, B.; Biswas, S. Identifying Compensatory Movement Patterns in the Upper Extremity Using a Wearable Sensor System. Physiol. Meas. 2017, 38, 2222–2234. [Google Scholar] [CrossRef] [PubMed]
- Bandodkar, A.J.; Jeang, W.J.; Ghaffari, R.; Rogers, J.A. Wearable Sensors for Biochemical Sweat Analysis. Annu. Rev. Anal. Chem. 2019, 12, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, X.; Liu, Y.; Sourina, O.; Mueller-Wittig, W. CogniMeter: EEG-Based Emotion, Mental Workload and Stress Visual Monitoring. In Proceedings of the 2015 International Conference on Cyberworlds (CW), Washington, DC, USA, 7–9 October 2015; pp. 153–160. [Google Scholar]
- Peake, J.M.; Kerr, G.; Sullivan, J.P. A Critical Review of Consumer Wearables, Mobile Applications, and Equipment for Providing Biofeedback, Monitoring Stress, and Sleep in Physically Active Populations. Front. Physiol. 2018, 9, 743. [Google Scholar] [CrossRef]
- ElectronicDesign. Available online: https://www.electronicdesign.com/ (accessed on 5 January 2022).
- Burbano-Fernandez, M.F.; Ramirez-Gonzalez, G. Wearable Technology and Health: A Bibliometric Analysis Using SciMAT. F1000Research 2018, 7, 1893. [Google Scholar] [CrossRef] [Green Version]
- Elsevier Content Coverage Guide; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1–24.
- Code, R. Wearable Technology in Healthcare. Nat. Biotechnol. 2019, 37, 376. [Google Scholar] [CrossRef]
- Griffith, L.G. Advances in Biomedical Engineering. JAMA 2001, 285, 556. [Google Scholar] [CrossRef]
- Bonato, P. Wearable Sensors and Systems. IEEE Eng. Med. Biol. Mag. 2010, 29, 25–36. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Zyoud, S.H.; Sweileh, W.M.; Awang, R.; Al-Jabi, S.W. Global Trends in Research Related to Social Media in Psychology: Mapping and Bibliometric Analysis. Int. J. Ment. Health Syst. 2018, 12, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cipresso, P.; Giglioli, I.A.C.; Raya, M.A.; Riva, G. The Past, Present, and Future of Virtual and Augmented Reality Research: A Network and Cluster Analysis of the Literature. Front. Psychol. 2018, 9, 2086. [Google Scholar] [CrossRef] [Green Version]
- Qi, B.; Jin, S.; Qian, H.; Zou, Y. Bibliometric Analysis of Chronic Traumatic Encephalopathy Research from 1999 to 2019. Int. J. Environ. Res. Public Health 2020, 17, 5411. [Google Scholar] [CrossRef] [PubMed]
- Bonato, P. Wearable Sensors/Systems and Their Impact on Biomedical Engineering. IEEE Eng. Med. Biol. Mag. 2003, 22, 18–20. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A Review of Wearable Sensors and Systems with Application in Rehabilitation. J. Neuroeng. Rehabil. 2012, 9, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahloko, L.; Adebesin, F. A Systematic Literature Review of the Factors That Influence the Accuracy of Consumer Wearable Health Device Data. In Responsible Design, Implementation and Use of Information and Communication Technology; Springer: Cham, Switzerland, 2020; pp. 96–107. [Google Scholar]
- Rich, E.; Miah, A. Mobile, Wearable and Ingestible Health Technologies: Towards a Critical Research Agenda. Health Sociol. Rev. 2017, 26, 84–97. [Google Scholar] [CrossRef] [Green Version]
- Dinh-Le, C.; Chuang, R.; Chokshi, S.; Mann, D. Wearable Health Technology and Electronic Health Record Integration: Scoping Review and Future Directions. JMIR Mhealth Uhealth 2019, 7, e12861. [Google Scholar] [CrossRef]
- Loncar-Turukalo, T.; Zdravevski, E.; Machado da Silva, J.; Chouvarda, I.; Trajkovik, V. Literature on Wearable Technology for Connected Health: Scoping Review of Research Trends, Advances, and Barriers. J. Med. Internet Res. 2019, 21, e14017. [Google Scholar] [CrossRef]
- Smith, G.D. ‘Getting the Most out from Keywords’. J. Clin. Nurs. 2021, 30, e23–e24. [Google Scholar] [CrossRef]
- Reinkensmeyer, D.J.; Bonato, P.; Boninger, M.L.; Chan, L.; Cowan, R.E.; Fregly, B.J.; Rodgers, M.M. Major Trends in Mobility Technology Research and Development: Overview of the Results of the NSF-WTEC European Study. J. Neuroeng. Rehabil. 2012, 9, 22. [Google Scholar] [CrossRef]
- Toffola, L.D.; Patel, S.; Ozsecen, M.Y.; Ramachandran, R.; Bonato, P. A Wearable System for Long-Term Monitoring of Knee Kinematics. In Proceedings of the 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics, Hong Kong, China, 5–7 January 2012; pp. 188–191. [Google Scholar]
- Poon, C.C.Y.; Wang, M.D.; Bonato, P.; Fenstermacher, D.A. Editorial: Special Issue on Health Informatics and Personalized Medicine. IEEE Trans. Biomed. Eng. 2013, 60, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, N.; Christakis, Y.; Di, J.; Bruno, J.; Zhang, Y.; Dorsey, E.R.; Pigeon, W.R.; Beck, L.A.; Thomas, K.; Liu, Y.; et al. Development of Digital Measures for Nighttime Scratch and Sleep Using Wrist-Worn Wearable Devices. NPJ Digit. Med. 2021, 4, 42. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Moon, Y.; McGinnis, R.S.; Seagers, K.; Motl, R.W.; Sheth, N.; Wright, J.A.; Ghaffari, R.; Patel, S.; Sosnoff, J.J. Assessment of Postural Sway in Individuals with Multiple Sclerosis Using a Novel Wearable Inertial Sensor. Digit. Biomark. 2018, 2, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sapienza, S.; Adans-Dester, C.; OBrien, A.; Vergara-Diaz, G.; Lee, S.; Patel, S.; Black-Schaffer, R.; Zafonte, R.; Bonato, P.; Meagher, C.; et al. Using a Minimum Set of Wearable Sensors to Assess Quality of Movement in Stroke Survivors. In Proceedings of the 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Philadelphia, PA, USA, 17–19 July 2017; pp. 284–285. [Google Scholar]
- Lee, S.I.; Adans-Dester, C.; O’Brien, A.; Diaz, G.V.; Black-Schaffer, R.; Patel, S.; Zafonte, R.; Bonato, P. Using Wearable Motion Sensors to Estimate Longitudinal Changes in Movement Quality in Stroke and Traumatic Brain Injury Survivors Undergoing Rehabilitation. Arch. Phys. Med. Rehabil. 2016, 97, e117. [Google Scholar] [CrossRef]
- McGinnis, R.S.; Patel, S.; Silva, I.; Mahadevan, N.; DiCristofaro, S.; Jortberg, E.; Ceruolo, M.; Aranyosi, A.J. Skin Mounted Accelerometer System for Measuring Knee Range of Motion. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 5298–5302. [Google Scholar]
- Raj, M.; Patel, S.; Lee, C.H.; Ma, Y.; Banks, A.; McGinnis, R.; McGrane, B.; Morey, B.; Model, J.B.; DePetrillo, P.; et al. Multifunctional Epidermal Sensor Systems with Ultrathin Encapsulation Packaging. In Stretchable Bioelectronics for Medical Devices and Systems; Springer: Cham, Switzerland, 2016; pp. 193–205. [Google Scholar]
- Patel, S.; Hughes, R.; Hester, T.; Stein, J.; Akay, M.; Dy, J.; Bonato, P. Tracking Motor Recovery in Stroke Survivors Undergoing Rehabilitation Using Wearable Technology. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 6858–6861. [Google Scholar]
- Patel, S.; Chen, B.; Buckley, T.; Rednic, R.; McClure, D.; Tarsy, D.; Shih, L.; Dy, J.; Welsh, M.; Bonato, P. Home Monitoring of Patients with Parkinson’s Disease via Wearable Technology and a Web-Based Application. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 4411–4414. [Google Scholar]
- Caldas, R.; Mundt, M.; Potthast, W.; Buarque de Lima Neto, F.; Markert, B. A Systematic Review of Gait Analysis Methods Based on Inertial Sensors and Adaptive Algorithms. Gait. Posture 2017, 57, 204–210. [Google Scholar] [CrossRef]
- Porciuncula, F.; Roto, A.V.; Kumar, D.; Davis, I.; Roy, S.; Walsh, C.J.; Awad, L.N. Wearable Movement Sensors for Rehabilitation: A Focused Review of Technological and Clinical Advances. PM&R 2018, 10, S220–S232. [Google Scholar] [CrossRef] [Green Version]
- Worsey, M.; Espinosa, H.; Shepherd, J.; Thiel, D. Inertial Sensors for Performance Analysis in Combat Sports: A Systematic Review. Sports 2019, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- UCLA Health. Billi Research Lab. Available online: https://www.uclahealth.org/ortho/billi-research-lab (accessed on 29 November 2021).
- Williamson, J.; Liu, Q.; Lu, F.; Mohrman, W.; Li, K.; Dick, R.; Shang, L. Data Sensing and Analysis: Challenges for Wearables. In Proceedings of the the 20th Asia and South Pacific Design Automation Conference; Chiba, Japan, 19–22 January 2015, pp. 136–141.
- Lam Po Tang, S.; Stylios, G.K. An Overview of Smart Technologies for Clothing Design and Engineering. Int. J. Cloth. Sci. Technol. 2006, 18, 108–128. [Google Scholar] [CrossRef]
- Ma, Y.-C.; Chao, Y.-P.; Tsai, T.-Y. Smart-Clothes—Prototyping of a Health Monitoring Platform. In Proceedings of the 2013 IEEE Third International Conference on Consumer Electronics—Berlin (ICCE-Berlin), Berlin, Germany, 9–11 September 2013; pp. 60–63. [Google Scholar]
- Borges, L.M.; Rente, A.; Velez, F.J.; Salvado, L.R.; Lebres, A.S.; Oliveira, J.M.; Araujo, P.; Ferro, J. Overview of Progress in Smart-Clothing Project for Health Monitoring and Sport Applications. In Proceedings of the 2008 First International Symposium on Applied Sciences on Biomedical and Communication Technologies, Aalborg, Denmark, 25–28 October 2008; pp. 1–6. [Google Scholar]
- Fernández-Caramés, T.; Fraga-Lamas, P. Towards the Internet-of-Smart-Clothing: A Review on IoT Wearables and Garments for Creating Intelligent Connected E-Textiles. Electronics 2018, 7, 405. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Ma, Y.; Song, J.; Lai, C.-F.; Hu, B. Smart Clothing: Connecting Human with Clouds and Big Data for Sustainable Health Monitoring. Mob. Netw. Appl. 2016, 21, 825–845. [Google Scholar] [CrossRef]
- Coyle, S.; Curto, V.F.; Benito-Lopez, F.; Florea, L.; Diamond, D. Wearable Bio and Chemical Sensors. In Wearable Sensors; Elsevier: Amsterdam, The Netherlands, 2014; pp. 65–83. [Google Scholar]
- National Institute of Biomedical Imaging and Bioengineering. Available online: https://www.nibib.nih.gov/espanol/temas-cientificos/sensors (accessed on 19 September 2022).
- Lou, Z.; Wang, L.; Shen, G. Recent Advances in Smart Wearable Sensing Systems. Adv. Mater. Technol. 2018, 3, 1800444. [Google Scholar] [CrossRef] [Green Version]
- Brophy, K.; Davies, S.; Olenik, S.; Cotur, Y.; Ming, D.; Van Zalk, N.; O’Hare, D.; Guder, F.; Yetisen, A.K. The Future of Wearable Technologies; Imperial College London: London, UK, 2021. [Google Scholar]
- Mavrogiorgou, A.; Kiourtis, A.; Touloupou, M.; Kapassa, E.; Kyriazis, D. Internet of Medical Things (IoMT): Acquiring and Transforming Data into HL7 FHIR through 5G Network Slicing. Emerg. Sci. J. 2019, 3, 64. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, E.; Fonseca, H.; Diniz-Sousa, F.; Veras, L.; Boppre, G.; Oliveira, J.; Pinto, D.; Alves, A.J.; Barbosa, A.; Mendes, R.; et al. Wearable Devices for Physical Activity and Healthcare Monitoring in Elderly People: A Critical Review. Geriatrics 2021, 6, 38. [Google Scholar] [CrossRef] [PubMed]
- Mavrogiorgou, A.; Kiourtis, A.; Kyriazis, D. A Pluggable IoT Middleware for Integrating Data of Wearable Medical Devices. Smart Health 2022, 26, 100326. [Google Scholar] [CrossRef]
- Banerjee, S.; Hemphill, T.; Longstreet, P. Wearable Devices and Healthcare: Data Sharing and Privacy. Inf. Soc. 2018, 34, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, S.M.A.; Mahgoub, I.; Du, E.; Leavitt, M.A.; Asghar, W. Advances in Healthcare Wearable Devices. NPJ Flex. Electron. 2021, 5, 9. [Google Scholar] [CrossRef]
- Ates, H.C.; Nguyen, P.Q.; Gonzalez-Macia, L.; Morales-Narváez, E.; Güder, F.; Collins, J.J.; Dincer, C. End-to-End Design of Wearable Sensors. Nat. Rev. Mater. 2022, 7, 887–907. [Google Scholar] [CrossRef]
Search for Keywords |
---|
TITLE-ABS-KEY (((e-health OR m-health OR “mobile health” OR u-health OR telemedicine) AND (imu OR gyroscope OR accelerometer OR “wearable sensor” OR “wearable technology”))) AND (monitoring) |
Filters applied |
(LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “re”)) |
Criteria | Values |
---|---|
Database | Scopus (Elsevier) |
Document types | Original articles and reviews |
Document contents | Empirical and theoretical studies related to the aplplications of wearable technology in healthcare (WTH) |
Date of publication | From 2000 to 2021 |
Rank | Country | Frequency (%) n = 600 | Institution | Frequency (%) n = 600 |
---|---|---|---|---|
1st | United States | 208 (34.7) | University of California, Los Angeles | 19 (3.1) |
2nd | United Kingdom | 68 (11.3) | Harvard Medical School | 15 (2.5) |
3rd | Italy | 53 (8.8) | University of Twente | 10 (1.6) |
4th | China | 42 (7) | Universidad de Granada | 10 (1.6) |
5th | South Korea | 38 (6.3) | David Geffen School of Medicine at UCLA | 9 (1.5) |
6th | Spain | 35 (5.8) | Imperial College London | 9 (1.5) |
7th | Australia | 34 (5.7) | University of Oxford | 9 (1.5) |
8th | Germany | 33 (5.5) | Université McGill | 8 (1.4) |
9th | India | 28 (4.7) | IRCCS Istituto Auxologio Italiano | 8 (1.4) |
10th | Canada | 27 (4.5) | University of California, San Francisco | 8 (1.4) |
Total | 566 (94.3) | Total | 105 (17.5) | |
Others | 34 (5.7) | Others | 495 (82.5) |
Rank | Journal | Records, (%) n = 600 | Citations | TLS | Country | Subject Area (Category) |
---|---|---|---|---|---|---|
1st | Sensors (Switzerland) | 51 (8.5) | 1461 | 14 | Switzerland | Biochemistry, Genetics and Molecular Biology (Biochemistry); Chemistry (Analytical Chemistry); Computer Science (Information Systems); Engineering (Electrical and Electronic Engineering); Medicine (Medicine (miscellaneous); Physics and Astronomy (Atomic and Molecular Physics, and Optics; Instrumentation). |
2nd | JMIR mHealth and uHealth | 31 (5.2) | 446 | 10 | Canada | Medicine (Health Informatics). |
3rd | Telemedicine and E Health | 26 (4.3) | 736 | 15 | United States | Health Professions (Health Information Management); Medicine (Health Informatics; Medicine (miscellaneous)). |
4th | IEEE Journal of Biomedical and Health Informatics | 21 (3.5) | 902 | 16 | United States | Biochemistry, Genetics and Molecular Biology (Biotechnology); Computer Science (Computer Science Applications); Engineering (Electrical and Electronic Engineering); Health Professions (Health Information Management). |
5th | Journal of Medical Internet Research | 18 (3) | 380 | 8 | Canada | Medicine (Health Informatics). |
6th | IEEE Access | 12 (2) | 146 | 5 | United States | Computer Science (Computer Science (miscellaneous)); Engineering (Engineering (miscellaneous)); Materials Science (Materials Science (miscellaneous)). |
7th | IEEE Sensor Journal | 11 (1.8) | 180 | 5 | United States | Engineering (Electrical and Electronic Engineering); Physics and Astronomy (Instrumentation). |
8th | IEEE Transactions on Biomedical Engineering | 11 (1.8) | 465 | 9 | United States | Engineering (Biomedical Engineering). |
9th | IEEE Transactions on Information Technology in Biomedicine | 9 (1.5) | 1517 | 11 | United States | Computer Science (Interdisciplinary Applications); Medical Informatics; Mathematical & Computational Biology; Computer Science (Information Systems). |
10th | Journal of Medical Systems Total Others | 9 (1.5) 199 (33.2) 401 (66.8) | 296 | 3 | United States | Computer Science (Information Systems); Health Professions (Health Information Management); Medicine (Health Informatics; Medicine (miscellaneous)). |
Rank | Author | Records | Citations | TLS | Co-Cited Authors | Citations | TLS |
---|---|---|---|---|---|---|---|
1st | Bonato, P. | 9 | 1646 | 112 | Bonato, P. | 86 | 4942 |
2nd | Patel, S. | 4 | 1304 | 88 | Hausdorff, J.M. | 52 | 3524 |
3rd | Rodgers, M. | 1 | 1126 | 58 | Patel, S. | 63 | 3514 |
4th | Park, H. | 1 | 1126 | 58 | Lemoyne, R. | 31 | 2760 |
5th | Chan, L. | 1 | 1126 | 58 | Giladi, N. | 31 | 2597 |
6th | Parisi, F. | 2 | 40 | 52 | Aminian, K. | 65 | 2538 |
7th | Mauro, A. | 2 | 40 | 52 | Mastroianni, T. | 27 | 2440 |
8th | Ferrari, G. | 2 | 40 | 52 | Troster, G. | 43 | 2288 |
9th | Cimolin, V. | 2 | 40 | 52 | Chiari, L. | 26 | 2280 |
10th | Azzaro, C. | 2 | 40 | 52 | Horak, F.B. | 20 | 1964 |
Cluster, Ranked Terms | Top Terms |
---|---|
#0 | system; information; network; wireless; standard heart; blood; electronic; diagnosis; pressure |
#1 | algorithm; rate; oximetry; respiratory; pulse care; agent; walking; test; heart |
#2 | heart rate; risk; hospital; textile sleep; mental; dementia; prospective; caregiver |
#3 | biomonitoring; e textile; electroactive polymers (EAPs); electronic textile; polymer actuator; polymer battery; polymer electronics; polymer sensor; rehabilitation and telemedicine; smart textile; wearable sensor; actuator; biomedical engineering; biosensor; elastomer; human computer interaction; human rehabilitation equipment; intelligent material; patient monitoring; computing methodology; diagnosis, computer-assisted; electrochemistry; equipment design; monitoring, ambulatory; polymer; telemedicine; telemetry; textile; transducer |
#4 | wireless; signal; internet; electrocardiography; movement aged; male; sleep; textile |
#5 | general practitioner/GP; Internet; telemedicine; biological monitoring; environment; human; Internet of Things; remote sensing; technology; telecommunication; United States; human; image processing, computer-assisted; mountaineering |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de-la-Fuente-Robles, Y.-M.; Ricoy-Cano, A.-J.; Albín-Rodríguez, A.-P.; López-Ruiz, J.L.; Espinilla-Estévez, M. Past, Present and Future of Research on Wearable Technologies for Healthcare: A Bibliometric Analysis Using Scopus. Sensors 2022, 22, 8599. https://doi.org/10.3390/s22228599
de-la-Fuente-Robles Y-M, Ricoy-Cano A-J, Albín-Rodríguez A-P, López-Ruiz JL, Espinilla-Estévez M. Past, Present and Future of Research on Wearable Technologies for Healthcare: A Bibliometric Analysis Using Scopus. Sensors. 2022; 22(22):8599. https://doi.org/10.3390/s22228599
Chicago/Turabian Stylede-la-Fuente-Robles, Yolanda-María, Adrián-Jesús Ricoy-Cano, Antonio-Pedro Albín-Rodríguez, José Luis López-Ruiz, and Macarena Espinilla-Estévez. 2022. "Past, Present and Future of Research on Wearable Technologies for Healthcare: A Bibliometric Analysis Using Scopus" Sensors 22, no. 22: 8599. https://doi.org/10.3390/s22228599