Inertial Indoor Pedestrian Navigation Based on Cascade Filtering Integrated INS/Map Information
Abstract
:1. Introduction
1.1. Related Work
1.2. Our Contributions
2. Cascade Filtering Overall Framework
3. Lower Filter
3.1. Attitude Correction Based on ECF
3.2. Trajectory Restoration Process of Lower Filtering
4. Upper Filter
4.1. Map Modeling
4.2. Particle Filter Process Based on Map Matching
4.2.1. Particle Initialization
4.2.2. Particle Propagation
4.2.3. Weight Update
4.2.4. Particle Initialization
4.2.5. Resampling
4.3. Pedestrian State Determination
Algorithm 1:Pedestrian walking state determination algorithm |
|
4.4. Correction Process Combined with Map Information
- 1.
- According to Algorithm 1, determine whether the pedestrian is in a single-turn state and is close to the inflection point of the building’s map. If so, go to the next step.
- 2.
- Update the particle weights according to Equation (12), and then perform particle resampling.
- 3.
- Perform clustering analysis on the resampled particle, and then the cluster center with the highest weight can be determined as the final corrected position.
5. Experimental Environment and Display
5.1. Hardware
5.2. Experiment and Analysis
5.3. Experiment I: 2D Positioning
5.4. Experiment II: 3D Positioning
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Liu, D.; Sheng, B.; Hou, F.; Rao, W.; Liu, H. From wireless positioning to mobile positioning: An overview of recent advances. IEEE Syst. J. 2014, 8, 1249–1259. [Google Scholar] [CrossRef]
- Herrera, E.P.; Kaufmann, H.; Secue, J.; Quirós, R.; Fabregat, G. Improving data fusion in personal positioning systems for outdoor environments. Inf. Fusion 2013, 14, 45–56. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, K.; Wang, W.; Li, X. A self-adaptive AP selection algorithm based on multiobjective optimization for indoor WiFi positioning. IEEE Internet Things J. 2020, 8, 1406–1416. [Google Scholar] [CrossRef]
- Wen, K.; Yu, K.; Li, Y.; Zhang, S.; Zhang, W. A new quaternion Kalman filter based foot-mounted IMU and UWB tightly-coupled method for indoor pedestrian navigation. IEEE Trans. Veh. Technol. 2020, 69, 4340–4352. [Google Scholar] [CrossRef]
- Gualda, D.; Pérez-Rubio, M.C.; Ureña, J.; Pérez-Bachiller, S.; Villadangos, J.M.; Hernández, Á.; García, J.J.; Jiménez, A. LOCATE-US: Indoor positioning for mobile devices using encoded ultrasonic signals, inertial sensors and graph-matching. Sensors 2021, 21, 1950. [Google Scholar] [CrossRef]
- You, Y.; Wu, C. Hybrid indoor positioning system for pedestrians with swinging arms based on smartphone IMU and RSSI of BLE. IEEE Trans. Instrum. Meas. 2021, 70, 1–15. [Google Scholar] [CrossRef]
- Zhu, J.; Xu, H. Review of RFID-based indoor positioning technology. In Innovative Mobile and Internet Services in Ubiquitous Computing; Barolli, L., Xhafa, F., Javaid, N., Enokido, T., Eds.; Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2018; pp. 632–641. [Google Scholar]
- Nguyen, T.H.; Nguyen, T.M.; Xie, L. Range-focused fusion of camera-IMU-UWB for accurate and drift-reduced localization. IEEE Robot. Autom. Lett. 2021, 6, 1678–1685. [Google Scholar] [CrossRef]
- Zhu, Y.; Luo, X.; Guan, S.; Wang, Z. Indoor positioning method based on WiFi/Bluetooth and PDR fusion positioning. In Proceedings of the 2021 13th International Conference on Advanced Computational Intelligence (ICACI), Chongqing, China, 14–16 May 2021; pp. 233–238. [Google Scholar]
- Yu, C.; El-Sheimy, N.; Lan, H.; Liu, Z. Map-based indoor pedestrian navigation using an auxiliary particle filter. Micromachines 2017, 8, 225. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Chen, X. An improved particle filter based indoor tracking system via joint Wi-Fi/PDR localization. Meas. Sci. Technol. 2020, 32, 014004. [Google Scholar] [CrossRef]
- Chen, Z.; Zou, H.; Yang, J.; Jiang, H.; Xie, L. WiFi fingerprinting indoor localization using local feature-based deep LSTM. IEEE Syst. J. 2019, 14, 3001–3010. [Google Scholar] [CrossRef]
- Sun, M.; Wang, Y.; Joseph, W.; Plets, D. Indoor Localization Using Mind Evolutionary Algorithm-Based Geomagnetic Positioning and Smartphone IMU Sensors. IEEE Sens. J. 2022, 22, 7130–7141. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Z.; Wang, Z. An Adaptive Indoor Positioning Method Using Multisource Information Fusion Combing Wi-Fi/MM/PDR. IEEE Sens. J. 2022, 22, 6010–6018. [Google Scholar] [CrossRef]
- Yue, Y.; Zhao, X.; Li, Z. Enhanced and facilitated indoor positioning by visible-light GraphSLAM technique. IEEE Internet Things J. 2020, 8, 1183–1196. [Google Scholar] [CrossRef]
- Shi, J.; Ren, M.; Wang, P.; Meng, J. Research on pf-slam indoor pedestrian localization algorithm based on feature point map. Micromachines 2018, 9, 267. [Google Scholar] [CrossRef] [Green Version]
- Koroglu, M.T.; Korkmaz, M.; Yilmaz, A.; Durdu, A. Multiple hypothesis testing approach to pedestrian INS with map-matching. In Proceedings of the 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Pisa, Italy, 30 September–3 October 2019; pp. 1–8. [Google Scholar]
- Koroglu, M.T.; Yilmaz, A. Pedestrian inertial navigation with building floor plans for indoor environments via non-recursive Bayesian filtering. In Proceedings of the 2017 IEEE SENSORS, Glasgow, UK, 29 October–1 November 2017; pp. 1–3. [Google Scholar]
- Zhang, Y.; Guo, J.; Wang, F.; Zhu, R.; Wang, L. An Indoor Localization Method Based on the Combination of Indoor Map Information and Inertial Navigation with Cascade Filter. J. Sens. 2021, 2021, 7621393. [Google Scholar] [CrossRef]
- Mahony, R.; Hamel, T.; Pflimlin, J.M. Nonlinear complementary filters on the special orthogonal group. IEEE Trans. Autom. Control 2008, 53, 1203–1218. [Google Scholar] [CrossRef] [Green Version]
- Poulose, A.; Eyobu, O.S.; Han, D.S. An indoor position-estimation algorithm using smartphone IMU sensor data. IEEE Access 2019, 7, 11165–11177. [Google Scholar] [CrossRef]
- Madgwick, S.O.; Wilson, S.; Turk, R.; Burridge, J.; Kapatos, C.; Vaidyanathan, R. An extended complementary filter for full-body MARG orientation estimation. Ieee/Asme Trans. Mechatron. 2020, 25, 2054–2064. [Google Scholar] [CrossRef]
- Junoh, S.A.; Subedi, S.; Pyun, J.Y. Floor Map-Aware Particle Filtering Based Indoor Navigation System. IEEE Access 2021, 9, 114179–114191. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, C.; Wang, C. Indoor multi-floor 3D target tracking based on the multi-sensor fusion. IEEE Access 2020, 8, 36836–36846. [Google Scholar] [CrossRef]
- Li, N.; Chen, J.; Yuan, Y. Indoor pedestrian integrated localization strategy based on WiFi/PDR. J. Chin. Inert. Technol. = Zhongguo Guanxing Jishu Xuebao 2017, 25, 483–487. [Google Scholar]
- Madgwick, S.O.H.; Harrison, A.J.L.; Vaidyanathan, R. Estimation of IMU and MARG orientation using a gradient descent algorithm. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; pp. 1–7. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, Z.; Zhao, H.; Qin, K.; Li, Z.; Hu, H. Inertial/magnetic sensors based pedestrian dead reckoning by means of multi-sensor fusion. Inf. Fusion 2018, 39, 108–119. [Google Scholar] [CrossRef]
Algorithms | RMSE (m) | Average Error (m) | Maxmum Error (m) |
---|---|---|---|
ZUPT-aided INS | 4.63 | 4.01 | 11.31 |
GDA+Map | 1.86 | 1.54 | 4.40 |
EKF+Map | 1.72 | 1.38 | 5.84 |
Cascade filter | 1.35 | 1.15 | 3.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, M.; Li, J.; Wang, W. Inertial Indoor Pedestrian Navigation Based on Cascade Filtering Integrated INS/Map Information. Sensors 2022, 22, 8840. https://doi.org/10.3390/s22228840
Fan M, Li J, Wang W. Inertial Indoor Pedestrian Navigation Based on Cascade Filtering Integrated INS/Map Information. Sensors. 2022; 22(22):8840. https://doi.org/10.3390/s22228840
Chicago/Turabian StyleFan, Menghao, Jia Li, and Weibing Wang. 2022. "Inertial Indoor Pedestrian Navigation Based on Cascade Filtering Integrated INS/Map Information" Sensors 22, no. 22: 8840. https://doi.org/10.3390/s22228840
APA StyleFan, M., Li, J., & Wang, W. (2022). Inertial Indoor Pedestrian Navigation Based on Cascade Filtering Integrated INS/Map Information. Sensors, 22(22), 8840. https://doi.org/10.3390/s22228840