Combination with Continual Learning Update Scheme for Power System Transient Stability Assessment
Abstract
:1. Introduction
- Introducing the continual learning algorithm SCP to resolve the problem of catastrophic forgetting when the model is updated. It can guarantee the evaluation requirements of all scenarios at the same time in the limited data range.
- A deep residual shrinkage network is used as a classifier to reduce the impact of noise on the model learning distribution and ensure the learning ability of the model.
- The focal loss function is introduced to solve the problems caused by unbalanced training samples and hard and easy samples during the training process.
2. Problem Formulation and Proposed Method
2.1. Transient Stability Assessment Problem
2.2. Proposed Method
3. Algorithms
3.1. Deep Residual Shrinkage Network
3.1.1. Deep Residual Network
3.1.2. Soft Thresholding
3.1.3. Attentional Mechanism
3.2. Continual Learning of SCP
3.2.1. Continual Learning
3.2.2. SCP
4. Transient Stability Assessment of Power System Based on SCP-DRSN
4.1. Input Features
4.2. Evaluation Indicators
4.3. Focal Loss Function
4.4. Evaluation Process
5. Case Study
5.1. A Modified New England 39-Bus System
5.1.1. Dataset Generation
5.1.2. Comparison with Other Models
5.1.3. Testing the Generalizability of the Model in New Scenarios with Large Disturbances
5.1.4. Comparison of Different Update Schemes
5.1.5. Robustness Analysis
5.2. A Lager Test SYSTEM
5.2.1. Dataset Generation
5.2.2. Model Performance Analysis
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, E.S.; Zhang, N.; Hodge, B.M.; Wang, Q.; Kang, C.Q.; Kroposki, B.; Xia, Q. The Role of Concentrating Solar Power Toward High Renewable Energy Penetrated Power Systems. IEEE Trans. Power Syst. 2018, 33, 6630–6641. [Google Scholar] [CrossRef]
- Huy, N.D.; Huy, C.D.; Chien, N.D.; Viet, N.X.H. Simulation of a Power Grid Blackout Event in Vietnam. In Proceedings of the General Meeting of the IEEE-Power-and-Energy-Society, Denver, CO, USA, 26–30 July 2015; IEEE: Denver, CO, USA, 2015. [Google Scholar]
- Yan, R.F.; Nahid Al, M.; Saha, T.K.; Bai, F.F.; Gu, H.J. The Anatomy of the 2016 South Australia Blackout: A Catastrophic Event in a High Renewable Network. IEEE Trans. Power Syst. 2018, 33, 5374–5388. [Google Scholar] [CrossRef]
- Xue, Y.S.; Xiao, S.J. Generalized congestion of power systems: Insights from the massive blackouts in India. J. Mod. Power Syst. Clean Energy 2013, 1, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Hashiesh, F.; Mostafa, H.E.; Khatib, A.R.; Helal, I.; Mansour, M.M. An Intelligent Wide Area Synchrophasor Based System for Predicting and Mitigating Transient Instabilities. IEEE Trans. Smart Grid 2012, 3, 645–652. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, K.; Yao, R.; Wang, B. Power System Time Domain Simulation Using a Differential Transformation Method. IEEE Trans. Power Syst. 2019, 34, 3739–3748. [Google Scholar] [CrossRef]
- Zadkhast, S.; Jatskevich, J.; Vaahedi, E. A Multi-Decomposition Approach for Accelerated Time-Domain Simulation of Transient Stability Problems. IEEE Trans. Power Syst. 2015, 30, 2301–2311. [Google Scholar] [CrossRef]
- Bhui, P.; Senroy, N. Real-Time Prediction and Control of Transient Stability Using Transient Energy Function. IEEE Trans. Power Syst. 2017, 32, 923–934. [Google Scholar] [CrossRef]
- Xu, Y.; Dong, Z.Y.; Zhang, R.; Xue, Y.S.; Hill, D.J. A Decomposition-Based Practical Approach to Transient Stability-Constrained Unit Commitment. IEEE Trans. Power Syst. 2015, 30, 1455–1464. [Google Scholar] [CrossRef]
- Karami, A. Power system transient stability margin estimation using neural networks. Int. J. Electr. Power Energy Syst. 2011, 33, 983–991. [Google Scholar] [CrossRef]
- De La Ree, J.; Centeno, V.; Thorp, J.S.; Phadke, A.G. Synchronized Phasor Measurement Applications in Power Systems. IEEE Trans. Smart Grid 2010, 1, 20–27. [Google Scholar] [CrossRef]
- Wang, Y.; Li, W.Y.; Lu, J.P. Reliability Analysis of Wide-Area Measurement System. IEEE Trans. Power Deliv. 2010, 25, 1483–1491. [Google Scholar] [CrossRef]
- Zhou, Y.Z.; Wu, J.Y.; Yu, Z.H.; Ji, L.Y.; Hao, L.L. A Hierarchical Method for Transient Stability Prediction of Power Systems Using the Confidence of a SVM-Based Ensemble Classifier. Energies 2016, 9, 778. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.X.; Sun, K.; Rather, Z.H.; Chen, Z.; Bak, C.L.; Thogersen, P.; Lund, P. A Systematic Approach for Dynamic Security Assessment and the Corresponding Preventive Control Scheme Based on Decision Trees. IEEE Trans. Power Syst. 2014, 29, 717–730. [Google Scholar] [CrossRef]
- Liu, C.X.; Tang, F.; Bak, C.L. An Accurate Online Dynamic Security Assessment Scheme Based on Random Forest. Energies 2018, 11, 17. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Verma, K.; Niazi, K.R.; Fozdar, M. Real-Time Monitoring of Post-Fault Scenario for Determining Generator Coherency and Transient Stability Through ANN. IEEE Trans. Ind. Appl. 2018, 54, 685–692. [Google Scholar] [CrossRef]
- Zheng, L.; Hu, W.; Zhou, Y.F.; Min, Y.; Xu, X.L.; Wang, C.M.; Yu, R. Deep Belief Network Based Nonlinear Representation Learning for Transient Stability Assessment. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; IEEE: Chicago, IL, USA, 2017. [Google Scholar]
- Shi, Z.T.; Yao, W.; Zeng, L.K.; Wen, J.F.; Fang, J.K.; Ai, X.M.; Wen, J.Y. Convolutional neural network-based power system transient stability assessment and instability mode prediction. Appl. Energy 2020, 263, 13. [Google Scholar] [CrossRef]
- Yan, R.; Geng, G.C.; Jiang, Q.Y.; Li, Y.L. Fast Transient Stability Batch Assessment Using Cascaded Convolutional Neural Networks. IEEE Trans. Power Syst. 2019, 34, 2802–2813. [Google Scholar] [CrossRef]
- Yu, J.J.Q.; Hill, D.J.; Lam, A.Y.S.; Gu, J.T.; Li, V.O.K. Intelligent Time-Adaptive Transient Stability Assessment System. IEEE Trans. Power Syst. 2018, 33, 1049–1058. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.P.; Hill, D.J.; Lu, C. Hierarchical Deep Learning Machine for Power System Online Transient Stability Prediction. IEEE Trans. Power Syst. 2020, 35, 2399–2411. [Google Scholar] [CrossRef]
- Huang, J.Y.; Guan, L.; Su, Y.S.; Yao, H.C.; Guo, M.X.; Zhong, Z. Recurrent Graph Convolutional Network-Based Multi-Task Transient Stability Assessment Framework in Power System. IEEE Access 2020, 8, 93283–93296. [Google Scholar] [CrossRef]
- Luo, Y.H.; Lu, C.; Zhu, L.P.; Song, J. Data-driven short-term voltage stability assessment based on spatial-temporal graph convolutional network. Int. J. Electr. Power Energy Syst. 2021, 130, 10. [Google Scholar] [CrossRef]
- Ren, C.; Xu, Y. A Fully Data-Driven Method Based on Generative Adversarial Networks for Power System Dynamic Security Assessment With Missing Data. IEEE Trans. Power Syst. 2019, 34, 5044–5052. [Google Scholar] [CrossRef]
- Li, J.M.; Zhao, Y.; Lee, Y.H.; Kim, S.J. Learning to Infer Voltage Stability Margin Using Transfer Learning. In Proceedings of the IEEE Data Science Workshop (DSW), Minneapolis, MN, USA, 2–5 June 2019; IEEE: Minneapolis, MN, USA, 2019; pp. 270–274. [Google Scholar]
- Cui, H.; Wang, Q.; Ye, Y.J.; Tang, Y.; Lin, Z.Z. A combinational transfer learning framework for online transient stability prediction. Sustain. Energy Grids Netw. 2022, 30, 10. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Moarref, N.; Yaslan, Y.; Genc, V.M.I. A CNN-Based Post-Contingency Transient Stability Prediction Using Transfer Learning. In Proceedings of the 11th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 28–30 November 2019; IEEE: Bursa, Turkey, 2019; pp. 156–160. [Google Scholar]
- Ren, C.; Xu, Y. Transfer Learning-Based Power System Online Dynamic Security Assessment: Using One Model to Assess Many Unlearned Faults. IEEE Trans. Power Syst. 2020, 35, 821–824. [Google Scholar] [CrossRef]
- Zhou, Y.Z.; Guo, Q.L.; Sun, H.B.; Yu, Z.H.; Wu, J.Y.; Hao, L.L. A novel data-driven approach for transient stability prediction of power systems considering the operational variability. Int. J. Electr. Power Energy Syst. 2019, 107, 379–394. [Google Scholar] [CrossRef]
- Parisi, G.I.; Kemker, R.; Part, J.L.; Kanan, C.; Wermter, S. Continual lifelong learning with neural networks: A review. Neural Netw. 2019, 113, 54–71. [Google Scholar] [CrossRef]
- De Lange, M.; Aljundi, R.; Masana, M.; Parisot, S.; Jia, X.; Leonardis, A.; Slabaugh, G.; Tuytelaars, T. A Continual Learning Survey: Defying Forgetting in Classification Tasks. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 3366–3385. [Google Scholar]
- Li, Z.Z.; Hoiem, D. Learning Without Forgetting. In Proceedings of the 14th European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016; Springer International Publishing AG: Amsterdam, The Netherlands, 2016; pp. 614–629. [Google Scholar]
- Kolouri, S.; Ketz, N.A.; Soltoggio, A.; Pilly, P.K. Sliced Cramer Synaptic Consolidation for Preserving Deeply Learned Representations. In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020. [Google Scholar]
- Zhao, M.H.; Zhong, S.S.; Fu, X.Y.; Tang, B.P.; Pecht, M. Deep Residual Shrinkage Networks for Fault Diagnosis. IEEE Trans. Ind. Inform. 2020, 16, 4681–4690. [Google Scholar] [CrossRef]
- Hatziargyriou, N.; Milanovic, J.; Rahmann, C.; Ajjarapu, V.; Canizares, C.; Erlich, I.; Hill, D.; Hiskens, I.; Kamwa, I.; Pal, B.; et al. Definition and Classification of Power System Stability—Revisited & Extended. IEEE Trans. Power Syst. 2021, 36, 3271–3281. [Google Scholar]
- Pavella, M.; Ernst, D.; Ruiz-Vega, D. Transient Stability of Power Systems: A Unified Approach to Assessment and Control; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 27–30 June 2016; IEEE: Seattle, WA, USA, 2016; pp. 770–778. [Google Scholar]
- Schwarz, J.; Luketina, J.; Czarnecki, W.M.; Grabska-Barwinska, A.; Teh, Y.W.; Pascanu, R.; Hadsell, R. Progress & Compress: A scalable framework for continual learning. In Proceedings of the 35th International Conference on Machine Learning (ICML), Stockholm, Sweden, 10–15 July 2018; Jmlr-Journal Machine Learning Research: Stockholm, Sweden, 2018. [Google Scholar]
- Xu, Y.; Zhang, R.; Zhao, J.H.; Dong, Z.Y.; Wang, D.H.; Yang, H.M.; Wong, K.P. Assessing Short-Term Voltage Stability of Electric Power Systems by a Hierarchical Intelligent System. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1686–1696. [Google Scholar] [CrossRef]
- Gomez, F.R.; Rajapakse, A.D.; Annakkage, U.D.; Fernando, I.T. Support Vector Machine-Based Algorithm for Post-Fault Transient Stability Status Prediction Using Synchronized Measurements. IEEE Trans. Power Syst. 2011, 26, 1474–1483. [Google Scholar] [CrossRef]
- Rajapakse, A.D.; Gomez, F.; Nanayakkara, K.; Crossley, P.A.; Terzija, V.V. Rotor Angle Instability Prediction Using Post-Disturbance Voltage Trajectories. IEEE Trans. Power Syst. 2010, 25, 947–956. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef] [PubMed]
Model | Acc/% | Mis/% | Fal/% |
---|---|---|---|
RF | 96.93 | 3.45 | 2.79 |
SVM | 97.06 | 3.30 | 2.68 |
MLP | 97.33 | 2.83 | 2.56 |
CNN | 97.86 | 2.50 | 2.10 |
DRN | 98.13 | 1.56 | 1.87 |
DRSN | 98.81 | 0.19 | 1.48 |
Model | 40 dB | 30 dB | 20 dB | ||||||
---|---|---|---|---|---|---|---|---|---|
Acc/% | Mis/% | Fal/% | Acc/% | Mis/% | Fal/% | Acc/% | Mis/% | Fal/% | |
RF | 96.72 | 3.61 | 3.07 | 96.01 | 4.08 | 3.61 | 94.71 | 5.81 | 4.89 |
SVM | 96.93 | 2.98 | 3.14 | 96.27 | 3.51 | 3.73 | 94.39 | 4.41 | 6.98 |
MLP | 97.13 | 2.20 | 3.38 | 96.46 | 2.82 | 4.07 | 95.12 | 3.77 | 5.70 |
CNN | 97.66 | 2.57 | 3.29 | 97.03 | 2.75 | 4.02 | 95.88 | 3.29 | 4.85 |
DRN | 98.06 | 1.75 | 2.19 | 97.59 | 2.19 | 3.61 | 96.62 | 3.11 | 4.22 |
DRSN | 98.79 | 0.21 | 1.45 | 98.48 | 0.38 | 1.75 | 98.03 | 0.71 | 2.24 |
Model | Acc/% | Mis/% | Fal/% |
---|---|---|---|
RF | 96.02 | 2.34 | 5.36 |
SVM | 96.34 | 2.62 | 3.68 |
MLP | 97.36 | 2.04 | 3.48 |
CNN | 97.63 | 2.01 | 3.39 |
DRN | 97.91 | 1.86 | 2.91 |
DRSN | 98.39 | 0.45 | 1.74 |
Model | 40 dB | 30 dB | 20 dB | ||||||
---|---|---|---|---|---|---|---|---|---|
Acc/% | Mis/% | Fal/% | Acc/% | Mis/% | Fal/% | Acc/% | Mis/% | Fal/% | |
RF | 95.91 | 2.35 | 5.48 | 95.54 | 2.62 | 7.76 | 94.72 | 4.17 | 7.36 |
SVM | 96.28 | 3.50 | 3.88 | 96.07 | 2.66 | 4.95 | 95.21 | 1.57 | 7.73 |
MLP | 97.25 | 2.21 | 3.51 | 96.74 | 2.91 | 5.14 | 95.69 | 4.71 | 7.42 |
CNN | 97.52 | 2.17 | 3.49 | 96.88 | 2.86 | 5.04 | 95.80 | 4.87 | 7.17 |
DRN | 97.84 | 2.06 | 3.02 | 97.09 | 2.76 | 4.66 | 95.96 | 4.83 | 6.86 |
DRSN | 98.22 | 0.56 | 1.76 | 98.17 | 0.69 | 1.94 | 98.03 | 0.93 | 2.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, B.; Hao, Z.; Chen, Z.; Zhang, J. Combination with Continual Learning Update Scheme for Power System Transient Stability Assessment. Sensors 2022, 22, 8982. https://doi.org/10.3390/s22228982
Hu B, Hao Z, Chen Z, Zhang J. Combination with Continual Learning Update Scheme for Power System Transient Stability Assessment. Sensors. 2022; 22(22):8982. https://doi.org/10.3390/s22228982
Chicago/Turabian StyleHu, Bowen, Zhenghang Hao, Zhuo Chen, and Jing Zhang. 2022. "Combination with Continual Learning Update Scheme for Power System Transient Stability Assessment" Sensors 22, no. 22: 8982. https://doi.org/10.3390/s22228982
APA StyleHu, B., Hao, Z., Chen, Z., & Zhang, J. (2022). Combination with Continual Learning Update Scheme for Power System Transient Stability Assessment. Sensors, 22(22), 8982. https://doi.org/10.3390/s22228982