Sensor-to-Image Based Neural Networks: A Reliable Reconstruction Method for Diffuse Optical Imaging of High-Scattering Media
Abstract
:1. Introduction
2. Methodology
2.1. Diffuse Optical Imaging (Forward and Inverse Problems)
2.2. Datasets
2.3. Network Architecture
2.4. Training and Testing Environment
3. Results
3.1. Test of Trained Models
3.2. Performance Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer International Publishing: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. [Google Scholar] [CrossRef] [Green Version]
- Pelt, D.M.; Batenburg, K.J. Fast Tomographic Reconstruction from Limited Data Using Artificial Neural Networks. IEEE Trans. Image Process. 2013, 22, 5238–5251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Su, Z.; Ying, L.; Peng, X.; Zhu, S.; Liang, F.; Feng, D.; Liang, D. Accelerating Magnetic Resonance Imaging via Deep Learning. Proc.-Int. Symp. Biomed. Imaging 2016, 2016, 514–517. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, J.Z.; Cauley, S.F.; Rosen, B.R.; Rosen, M.S. Image Reconstruction by Domain-Transform Manifold Learning. Nature 2018, 555, 487–492. [Google Scholar] [CrossRef] [Green Version]
- Gibson, A.; Dehghani, H. Diffuse Optical Imaging. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 3055–3072. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, H.; Eames, M.E.; Yalavarthy, P.K.; Davis, S.C.; Srinivasan, S.; Carpenter, C.M.; Pogue, B.W.; Paulsen, K.D. Near Infrared Optical Tomography Using NIRFAST: Algorithm for Numerical Model and Image Reconstruction. Commun. Numer. Methods Eng. 2009, 25, 711–732. [Google Scholar] [CrossRef]
- Durduran, T.; Choe, R.; Baker, W.B.; Yodh, A.G. Diffuse Optics for Tissue Monitoring and Tomography. Rep. Prog. Phys. 2010, 73, 076701. [Google Scholar] [CrossRef] [Green Version]
- Dehghani, H.; Sri Nivasan, S.; Pogue, B.W.; Gibson, A. Numerical Modelling and Image Reconstruction in Diffuse Optical Tomography. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 3073–3093. [Google Scholar] [CrossRef] [Green Version]
- Arridge, S.R.; Schotland, J.C. Optical Tomography: Forward and Inverse Problems. Inverse Probl. 2009, 25, 12. [Google Scholar] [CrossRef]
- Cao, N.; Nehorai, A.; Jacobs, M. Image Reconstruction for Diffuse Optical Tomography Using Sparsity Regularization and Expectation-Maximization Algorithm. Opt. Express 2007, 15, 13695. [Google Scholar] [CrossRef]
- Zhao, Q.; Ji, L.; Jiang, T. Improving Performance of Reflectance Diffuse Optical Imaging Using a Multicentered Mode. J. Biomed. Opt. 2006, 11, 064019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uludaǧ, K.; Steinbrink, J.; Villringer, A.; Obrig, H. Separability and Cross Talk: Optimizing Dual Wavelength Combinations for near-Infrared Spectroscopy of the Adult Head. Neuroimage 2004, 22, 583–589. [Google Scholar] [CrossRef]
- Feng, J.; Sun, Q.; Li, Z.; Sun, Z.; Jia, K. Back-Propagation Neural Network-Based Reconstruction Algorithm for Diffuse Optical Tomography. J. Biomed. Opt. 2018, 24, 1. [Google Scholar] [CrossRef] [PubMed]
- Yedder, H.; BenTaieb, A.; Shokoufi, M.; Zahiremami, A.; Golnaraghi, F.; Hamarneh, G. Deep Learning Based Image Reconstruction for Diffuse Optical Tomography. In Machine Learning for Medical Image Reconstruction, MLMIR 2018; Knoll, F., Maier, A., Rueckert, D., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 11074. [Google Scholar] [CrossRef]
- Yoo, J.; Sabir, S.; Heo, D.; Kim, K.H.; Wahab, A.; Choi, Y.; Lee, S.I.; Chae, E.Y.; Kim, H.H.; Bae, Y.M.; et al. Deep Learning Diffuse Optical Tomography. IEEE Trans. Med. Imaging 2020, 39, 877–887. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.-M.; Pan, M.-C.; Hsu, Y.-F.; Chen, L.-Y.; Pan, M.-C. Design and implementation of three-dimensional ring-scanning equipment for optimized measurements of near- infrared diffuse optical breast imaging. Opt. Eng. 2015, 54, 073107. [Google Scholar] [CrossRef]
- Chen, L.-Y.; Pan, M.-C.; Yan, C.-C.; Pan, M.-C. Wavelength Optimization Using Available Laser Diodes in Spectral Near-Infrared Optical Tomography. Appl. Opt. 2016, 55, 5729. [Google Scholar] [CrossRef]
- Gunther, J.E.; Lim, E.; Kim, H.K.; Flexman, M.; Brown, M.; Refrice, S.; Kalinsky, K.; Hershman, D.; Hielscher, A.H. Using diffuse optical tomography to monitor tumor response to neoadjuvant chemotherapy in breast cancer patients. Proc. SPIE 2013, 8578, 72–78. [Google Scholar]
- Al Abdi, R.; Graber, H.L.; Xu, Y.; Barbour, R.L. Optomechanical imaging system for breast cancer detection. J. Opt. Soc. Am. A 2011, 28, 2473–2493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Xi, L.; Jiang, R.; Yao, L.; Jiang, H. Integrated diffuse optical tomography and photoacoustic tomography: Phantom validations. Biomed. Opt. Express 2011, 2, 2348–2353. [Google Scholar] [CrossRef]
- Lucas, A.; Iliadis, M.; Molina, R.; Katsaggelos, A.K. Using Deep Neural Networks for Inverse Problems in Imaging: Beyond Analytical Methods. IEEE Signal Process. Mag. 2018, 35, 20–36. [Google Scholar] [CrossRef]
- Zheng, H.; Yang, Z.; Liu, W.; Liang, J.; Li, Y. Improving Deep Neural Networks Using Softplus Units. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), IEEE, Killarney, Ireland, 12–17 July 2015; Volume 2015, pp. 1–4. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. 32nd Int. Conf. Mach. Learn. ICML 2015 2015, 1, 448–456. [Google Scholar]
- Clevert, D.-A.; Unterthiner, T.; Hochreiter, S. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). In Proceedings of the 4th International Conference on Learning Representations (Poster), San Juan, PR, USA, 2–4 May 2016; pp. 1–14. [Google Scholar]
- Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical Evaluation of Rectified Activations in Convolutional Network. arXiv 2015, arXiv:1505.00853. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, Las Vegas, NV, USA, 27–30 June 2016; Volume 2016, pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Glorot, X.; Bengio, Y. Understanding the Difficulty of Training Deep Feedforward Neural Networks. J. Mach. Learn. Res. 2010, 9, 249–256. [Google Scholar]
- Chen, L.-Y.; Yu, J.-M.; Pan, M.-C.; Sun, S.-Y.; Chou, C.-C.; Pan, M.-C. Comparisons of Diffuse Optical Imaging between Direct-Current and Amplitude-Modulation Instrumentations. Opt. Quant. Elect. 2016, 48, 139. [Google Scholar] [CrossRef]
- Chen, L.Y.; Pan, M.C.; Pan, M.C. Flexible near Infrared Diffuse Optical Tomography with Varied Weighting Functions of Edge-preserving Regularization. Applied Optics 2013, 52, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.Y.; Pan, M.-C.; Chen, C.-H.; Pan, M.-C.; Shyr, Y.-M. Highly resolved diffuse tomography: A systematic approach using high-pass filtering for value-preserved images. J. Biomed. Opt. 2008, 13, 024022. [Google Scholar]
- Yu, J.M.; Pan, M.C.; Chen, L.Y.; Pan, M.C.; Hsu, Y.F. Phantom verification for a ring-scanning and prone diffuse optical imaging system. Optics Commun. 2017, 405, 177–184. [Google Scholar] [CrossRef]
- Pan, M.-C.; Yu, J.-M.; Chen, L.-Y.; Liang, Y.-T.; Pan, M.-C. Optical-property coefficient estimation of bulky medium in experiments with a succinctly analytical calculation. Opt. Quant. Elect. 2019, 51, 33. [Google Scholar] [CrossRef]
- Pan, M.-C.; Chen, C.-H.; Pan, M.-C.; Shyr, Y.-M. Near infrared tomographic system based on high angular resolution mechanism—Design, calibration, and performance. Measurement 2009, 42, 377–389. [Google Scholar] [CrossRef]
- Chen, L.Y.; Pan, M.C.; Pan, M.C. Visualized Numerical Assessment for near Infrared Diffuse Optical Tomography with Contrast-and-Size Detail Analysis. Opt. Rev. 2013, 20, 19–25. [Google Scholar] [CrossRef]
- Wang, L.V.; Wu, H. Biomedical Optics: Principles and Imaging; Wiley-Interscience: Hoboken, NJ, USA, 2007. [Google Scholar]
- Yuliansyah, D.R. Diffuse Optical Imaging Using Deep Convolutional Neural Networks. Master’s Thesis, National Central University, Taoyuan City, Taiwan, 2020. [Google Scholar]
Specifications | Feng et al. [14] | Yedder et al. [15] | Yoo et al. [16] |
---|---|---|---|
Measurement system | FD | CW | FD (3-D) |
S × D | 16 × 15 | 2 × 128 | 64 × 40 |
Input | 240 | 256 | 2560 |
Training | 20,000 | 4500 | 1000 |
Validation | 1045 | 200 | 500 |
Epoch | 16,000 | 2000 | 120 |
Trainable parameters | 1,560,191 | >4,000,000 | 137,625,600 |
Output | 2001 | 128 × 128 | 32 × 64 × 20 |
Network type | FCNN | FCNN + CNN | FCNN + CNN |
Parameters | Range or Value |
---|---|
2D shape and size | Circular, 60–150 mm in diameter |
# of sources/detectors | 16 |
Frequency | 10–100 MHz |
FEM mesh | 3169 nodes and 6144 elements |
Background absorption coefficient | 0.005–0.03 mm−1 |
Background scattering coefficient | 0.5–3 mm−1 |
contrast of inclusion to background | 1.5–8 |
Inclusion radius | 4–17 mm |
Partition (based on # of inclusions) | 0: 1%, 1: 44%, 2: 55% |
Partition (training and validation) | Training: 80%, Validation: 20% |
Total training and validation samples | 10,000 |
Specifications | Information |
---|---|
Loss function | Weighted sum of MSE |
Optimizer | Adam (β1 = 0.5) |
Learning rate | 0.0002 |
Batch size | 32 |
Epochs | 200 |
Framework | Keras with Tensorflow backend |
Environment | JupyterLab |
GPU | NVIDIA GeForce GT 640 (2 GB memory) |
CPU | Intel Core i7-5960X 3.00 GHz |
RAM | 24 GB |
CASE | D (mm) | f (MHz) | μa (mm−1) | (mm−1) | r (mm) | roc (mm) | θoc (°) | ca | |
---|---|---|---|---|---|---|---|---|---|
A466 (validation) | 110 | 0 | 0.0079 | 2.75 | 17.14 | 22.94 | 104.78 | 1.52 | 1.56 |
A1675 (training) | 100 | 100 | 0.0170 | 1.52 | 15.91 | 18.37 | 72.69 | 2.08 | 3.25 |
A3381 (training) | 130 | 10 | 0.0157 | 1.53 | 4.75 | 39.72 | 352.69 | 1.78 | 3.30 |
A4144 (training) | 80 | 20 | 0.0189 | 0.66 | 8.95 | 27.27 | 138.73 | 1.53 | 3.40 |
A4483 (validation) | 60 | 60 | 0.0103 | 0.71 | 4.05 | 7.11 | 260.35 | 2.06 | 3.44 |
A4617 (training) | 100 | 100 | 0.0150 | 0.90 | [14, 11] | [13, 34] | [255, 225] | [2, 2] | [3, 2] |
A5741 (training) | 130 | 100 | 0.0115 | 1.25 | [8.63, 4.15] | [46.39, 51.55] | [118.06, 55.02] | [2.36, 2.155] | [3.31, 2.34] |
A6392 (training) | 130 | 60 | 0.0210 | 2.86 | [14.36, 9.28] | [37.66, 20.85] | [139.07, 270.32] | [2.02, 2.25] | [1.86, 1.98] |
A6472 (validation) | 90 | 40 | 0.0221 | 1.25 | [9.86, 6.49] | [33.94, 27.37] | [21.20, 18.47] | [2.27, 2.29] | [2.31, 2.23] |
A8223 (training) | 70 | 70 | 0.0156 | 0.90 | [13.69, 5.64] | [17.50, 20.16] | [152.47, 138.59] | [2.16, 2.33] | [3.36, 1.64] |
CASE | D (mm) | f (MHz) | μa (mm−1) | (mm−1) | r (mm) | roc (mm) | θoc (°) | ca | |
---|---|---|---|---|---|---|---|---|---|
B1 | 50 | 20 | 0.006 | 0.6 | 5 | 12.5 | 180 | 4 | 4 |
B2 | 50 | 20 | 0.006 | 0.6 | [5, 5] | [12.5, 12.5] | [225, 135] | [4, 4] | [4, 4] |
B3 | 50 | 20 | 0.0079 | 0.6 | 5 | 10 | 225 | 4 | 4 |
B4 | 50 | 20 | 0.006 | 0.6 | 5 | 10 | 180 | 4 | 4 |
B5 | 50 | 20 | 0.0079 | 0.6 | 5 | 12.5 | 180 | 4 | 4 |
B6 | 50 | 20 | 0.0079 | 0.6 | 5 | 12.5 | 180 | 4 | 4 |
B7 | 50 | 20 | 0.0079 | 0.6 | [5, 5] | [12.5, 12.5] | [90, 270] | [4, 4] | [4, 4] |
B8 | 50 | 20 | 0.0079 | 0.6 | 5 | 12.5 | 180 | 4 | 4 |
B9 | 50 | 20 | 0.0079 | 0.6 | 5 | 12.5 | 180 | 4 | 4 |
B10 | 50 | 20 | 0.006 | 0.6 | 5 | 12.5 | 180 | 4 | 4 |
CASE | ||||||||
---|---|---|---|---|---|---|---|---|
A466 | 0.63 | 0.87 | 0.06 | 0.39 | 0.19 | 0.58 | 0.35 | 0.71 |
A1675 | 0.88 | 0.60 | 0.62 | 0.28 | 0.74 | 0.41 | 0.81 | 0.50 |
A3381 | 0.85 | 0.38 | 0.46 | −0.04 | 0.63 | −0.26 | 0.73 | −0.65 |
A4144 | −0.02 | 0.74 | −1.40 | −4.50 | −1.68 | −2.38 | −1.84 | −1.74 |
A4483 | 0.98 | 0.35 | 0.78 | 0.08 | 0.87 | 0.17 | 0.92 | 0.25 |
A4617 | 0.85 | 0.86 | 0.40 | 0.25 | 0.56 | 0.46 | 0.68 | 0.63 |
A5741 | 0.81 | 0.56 | 0.51 | 0.23 | 0.64 | 0.36 | 0.72 | 0.45 |
A6392 | 0.69 | 0.78 | 0.36 | 0.36 | 0.49 | 0.53 | 0.58 | 0.64 |
A6472 | 0.68 | 0.79 | 0.19 | −0.89 | 0.36 | −0.52 | 0.50 | −0.36 |
A8223 | −0.14 | 0.51 | −0.85 | −5.92 | −1.34 | −2.85 | −1.69 | −2.04 |
CASE | ||||||||
---|---|---|---|---|---|---|---|---|
A466 | −1.11 | −1.05 | −11.14 | −0.50 | −5.89 | −1.23 | −4.28 | −1.94 |
A1675 | −0.47 | 0.42 | −0.60 | 0.11 | −1.22 | 0.22 | −1.73 | 0.30 |
A3381 | 0.79 | 0.43 | 0.56 | 0.22 | 0.66 | 0.31 | 0.72 | 0.36 |
A4144 | −1.04 | 0.63 | −2.20 | −0.86 | −2.59 | −1.09 | −2.81 | −1.22 |
A4483 | 0.52 | 0.88 | 0.25 | 0.48 | 0.36 | 0.65 | 0.44 | 0.76 |
A4617 | −0.46 | −0.05 | −0.67 | −2.69 | −1.28 | −2.31 | −1.78 | −2.17 |
A5741 | 0.32 | 0.57 | 0.10 | 0.17 | −0.17 | 0.25 | −0.38 | 0.35 |
A6392 | −0.29 | −0.55 | −1.59 | −0.81 | −1.90 | −1.43 | −2.09 | −1.91 |
A6472 | −0.05 | −0.06 | −0.02 | −1.37 | −0.33 | −1.67 | −0.61 | −1.85 |
A8223 | −0.38 | −0.44 | −0.81 | −5.22 | −1.39 | −3.38 | −1.82 | -2.82 |
CASE | ||||||||
---|---|---|---|---|---|---|---|---|
B1 | 0.26 | 0.94 | −0.17 | 0.61 | −0.55 | 0.76 | −0.98 | 0.85 |
B2 | 0.73 | 0.48 | 0.14 | 0.23 | 0.32 | 0.33 | 0.48 | 0.40 |
B3 | 0.58 | 0.41 | 0.23 | 0.13 | 0.37 | 0.23 | 0.46 | 0.31 |
B4 | 0.78 | 0.41 | 0.36 | 0.18 | 0.53 | 0.27 | 0.64 | 0.33 |
B5 | 0.23 | 0.76 | −0.17 | 0.45 | −0.56 | 0.59 | −0.99 | 0.67 |
B6 | 0.31 | 0.51 | −0.09 | 0.17 | −0.39 | 0.30 | −0.81 | 0.39 |
B7 | 0.64 | 0.65 | 0.04 | 0.50 | 0.04 | 0.57 | −0.04 | 0.61 |
B8 | 0.93 | 0.33 | 0.63 | 0.07 | 0.77 | 0.15 | 0.84 | 0.22 |
B9 | 0.33 | 0.72 | −0.13 | 0.54 | −0.46 | 0.62 | −0.88 | 0.67 |
B10 | 0.98 | 0.51 | 0.52 | 0.19 | 0.72 | 0.31 | 0.84 | 0.40 |
CASE | ||||||||
---|---|---|---|---|---|---|---|---|
B1 | 0.69 | 0.69 | 0.45 | 0.50 | 0.55 | 0.59 | 0.62 | 0.64 |
B2 | 0.49 | 0.49 | 0.30 | 0.40 | 0.39 | 0.45 | 0.44 | 0.47 |
B3 | 0.65 | 0.65 | 0.34 | 0.59 | 0.47 | 0.62 | 0.55 | 0.63 |
B4 | 0.69 | 0.69 | 0.48 | 0.55 | 0.58 | 0.61 | 0.63 | 0.65 |
B5 | 0.44 | 0.44 | 0.16 | 0.41 | 0.26 | 0.43 | 0.34 | 0.43 |
B6 | 0.38 | 0.38 | 0.12 | 0.38 | 0.22 | 0.38 | 0.29 | 0.38 |
B7 | 0.64 | 0.64 | 0.28 | 0.46 | 0.42 | 0.54 | 0.52 | 0.59 |
B8 | 0.89 | 0.89 | 0.43 | 0.37 | 0.62 | 0.57 | 0.74 | 0.71 |
B9 | 0.72 | 0.72 | 0.31 | 0.46 | 0.48 | 0.58 | 0.59 | 0.64 |
B10 | 0.93 | 0.93 | 0.52 | −1.84 | 0.69 | −1.40 | 0.80 | −1.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuliansyah, D.R.; Pan, M.-C.; Hsu, Y.-F. Sensor-to-Image Based Neural Networks: A Reliable Reconstruction Method for Diffuse Optical Imaging of High-Scattering Media. Sensors 2022, 22, 9096. https://doi.org/10.3390/s22239096
Yuliansyah DR, Pan M-C, Hsu Y-F. Sensor-to-Image Based Neural Networks: A Reliable Reconstruction Method for Diffuse Optical Imaging of High-Scattering Media. Sensors. 2022; 22(23):9096. https://doi.org/10.3390/s22239096
Chicago/Turabian StyleYuliansyah, Diannata Rahman, Min-Chun Pan, and Ya-Fen Hsu. 2022. "Sensor-to-Image Based Neural Networks: A Reliable Reconstruction Method for Diffuse Optical Imaging of High-Scattering Media" Sensors 22, no. 23: 9096. https://doi.org/10.3390/s22239096
APA StyleYuliansyah, D. R., Pan, M. -C., & Hsu, Y. -F. (2022). Sensor-to-Image Based Neural Networks: A Reliable Reconstruction Method for Diffuse Optical Imaging of High-Scattering Media. Sensors, 22(23), 9096. https://doi.org/10.3390/s22239096