Utilizing Multi-Dimensional MmWave MIMO Channel Features for Location Verification
Abstract
:1. Introduction
- By exploiting multi-dimensional mmWave MIMO channel features in both the time domain and angle domain, we develop a new location verification scheme to achieve validation of a transmitter location for mmWave MIMO communication systems.
- To determine estimation error variances of channel features in terms of AAoA, EAoA, and path gain, we estimate the mmWave MIMO channels based on maximum-likelihood estimation theory. To analytically evaluate the performance of our proposed location verification scheme, we derive the typical two performance metrics and the statistical performance is analytically established.
- Extensive numerical results are provided to demonstrate that the proposed scheme achieves desired performance. Numerical results are used to further show how the system parameters can affect the statistical performance.
2. Problem Formulation and System Model
2.1. Problem Formulation
2.2. Channel Model
2.3. Communication Model
- is the transmitted signal at time t. The signal power is .
- denotes the channel matrix between transmitter X (either Alice or Eve) and receiver Bob.
- is a zero-mean complex additive white Gaussian noise (AWGN), i.e., .
3. Proposed Location Verification Scheme
3.1. Estimation of MmWave Channels
3.2. Location Validation
4. Performance Analysis
5. Numerical Results
5.1. System Parameters and Simulation Settings
5.2. Impact of SNR on the Verification Performance
5.3. Impact of the Number of Antennas on the Authentication Performance
5.4. Impact of the Number of Multipaths on the Authentication Performance
5.5. Impact of on the Authentication Performance
5.6. Performance Comparison
5.7. Impact of on the Authentication Performance
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, F.; Xu, L.; Kumari, S.; Li, X.; Shen, J.; Choo, K.R.; Wazid, M.; Das, A.K. An efficient authentication and key agreement scheme for multi-gateway wireless sensor networks in IoT deployment. J. Netw. Comput. Appl. 2017, 89, 72–85. [Google Scholar] [CrossRef]
- Esfahani, A.; Mantas, G.; Matischek, R.; Saghezchi, F.B.; Rodriguez, J.; Bicaku, A.; Maksuti, S.; Tauber, M.G.; Schmittner, C.; Bastos, J. A lightweight authentication mmechanism for M2M communications in industrial IoT environment. IEEE Internet Things J. 2019, 6, 288–296. [Google Scholar] [CrossRef]
- Stergiou, C.; Psannis, K.E.; Kim, B.; Gupta, B.B. Secure integration of IoT and cloud computing. Future Gener. Comput. Syst. 2018, 78, 964–975. [Google Scholar] [CrossRef]
- Wang, X.; Hao, P.; Hanzo, L. Physical-layer authentication for wireless security enhancement: Current challenges and future developments. IEEE Commun. Mag. 2016, 54, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Xie, N.; Chen, J.; Huang, L. Physical-layer authentication using multiple channel-based features. IEEE Trans. Inf. Forensics Secur. 2021, 16, 2356–2366. [Google Scholar] [CrossRef]
- Tang, J.; Xu, A.; Jiang, Y.; Zhang, Y.; Wen, H.; Zhang, T. MmWave MIMO physical layer authentication by using channel sparsity. In Proceedings of the 2020 IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS), Dalian, China, 20–22 March 2020; pp. 221–224. [Google Scholar]
- Maeng, S.J.; Yapici, Y.; Güvenç, I.; Dai, H.; Bhuyan, A. Power allocation for fingerprint-based PHY-Layer authentication with mmWave UAV networks. In Proceedings of the ICC 2021-IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Lord, S.F. 5G Millimeter-Wave Physical-Layer Authentication with Planar Reflectors. Ph.D. Thesis, Naval Postgraduate School, Monterey, CA, USA, 2019. [Google Scholar]
- Wang, N.; Li, W.; Wang, P.; Alipour-Fanid, A.; Jiao, L.; Zeng, K. Physical layer authentication for 5G communications: Opportunities and road ahead. IEEE Netw. 2020, 34, 198–204. [Google Scholar] [CrossRef]
- Wang, N.; Wang, P.; Alipour-Fanid, A.; Jiao, L.; Zeng, K. Physical-layer security of 5G wireless networks for IoT: Challenges and opportunities. IEEE Internet Things J. 2019, 6, 8169–8181. [Google Scholar] [CrossRef]
- Wang, N.; Jiao, L.; Wang, P.; Dabaghchian, M.; Zeng, K. Efficient identity spoofing attack detection for IoT in mm-Wave and Massive MIMO 5G communication. In Proceedings of the IEEE Global Communications Conference, GLOBECOM 2018, Abu Dhabi, United Arab Emirates, 9–13 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Wang, N.; Jiao, L.; Alipour-Fanid, A.; Dabaghchian, M.; Zeng, K. Pilot contamination attack detection for NOMA in 5G mm-Wave massive MIMO networks. IEEE Trans. Inf. Forensics Secur. 2020, 15, 1363–1378. [Google Scholar] [CrossRef]
- Wang, N.; Li, W.; Alipour-Fanid, A.; Jiao, L.; Dabaghchian, M.; Zeng, K. Pilot contamination attack detection for 5G mmWave grant-Free IoT networks. IEEE Trans. Inf. Forensics Secur. 2021, 16, 658–670. [Google Scholar] [CrossRef]
- Wang, N.; Jiao, L.; Wang, P.; Li, W.; Zeng, K. Exploiting beam features for sspoofing attack detection in mmWave 60-GHz IEEE 802.11ad networks. IEEE Trans. Wirel. Commun. 2021, 20, 3321–3335. [Google Scholar] [CrossRef]
- Wang, N.; Jiao, L.; Wang, P.; Li, W.; Zeng, K. Machine learning-based spoofing attack detection in MmWave 60GHz IEEE 802.11ad Networks. In Proceedings of the 39th IEEE Conference on Computer Communications, INFOCOM 2020, Toronto, ON, Canada, 6–9 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 2579–2588. [Google Scholar]
- Xiao, L.; Greenstein, L.J.; Mandayam, N.B.; Trappe, W. Channel-based spoofing detection in frequency-selective Rayleigh channels. IEEE Trans. Wirel. Commun. 2009, 8, 5948–5956. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Wan, X.; Han, Z. PHY-Layer authentication with multiple landmarks with reduced overhead. IEEE Trans. Wirel. Commun. 2018, 17, 1676–1687. [Google Scholar] [CrossRef]
- Liu, F.J.; Wang, X. Physical layer authentication enhancement using two-dimensional channel quantization. IEEE Trans. Wirel. Commun. 2016, 15, 4171–4182. [Google Scholar] [CrossRef]
- Alkhateeb, A.; Ayach, O.E.; Leus, G., Jr.; Heath, R.W. Channel estimation and hybrid precoding for millimeter Wave cellular systems. IEEE J. Sel. Top. Signal Process. 2014, 8, 831–846. [Google Scholar] [CrossRef] [Green Version]
- Méndez-Rial, R.; Rusu, C.; Alkhateeb, A.; González Prelcic, N.; Heath, R.W., Jr. Channel estimation and hybrid combining for mmWave: Phase shifters or switches? In Proceedings of the 2015 Information Theory and Applications Workshop, ITA 2015, San Diego, CA, USA, 1–6 February 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 90–97. [Google Scholar]
- Singh, J.; Ramakrishna, S. On the feasibility of codebook-based beamforming in millimeter wave systems with multiple antenna arrays. IEEE Trans. Wirel. Commun. 2015, 14, 2670–2683. [Google Scholar] [CrossRef]
- Hemadeh, I.A.; Satyanarayana, K.; El-Hajjar, M.; Hanzo, L. Millimeter-wave communications: Physical channel models, design considerations, antenna constructions, and link-budget. IEEE Commun. Surv. Tutor. 2018, 20, 870–913. [Google Scholar] [CrossRef] [Green Version]
- Fan, D.; Gao, F.; Liu, Y.; Deng, Y.; Wang, G.; Zhong, Z.; Nallanathan, A. Angle domain channel estimation in hybrid millimeter wave massive MIMO systems. IEEE Trans. Wirel. Commun. 2018, 17, 8165–8179. [Google Scholar] [CrossRef]
- Buzzi, S.; D’Andrea, C. On clustered statistical MIMO millimeter wave channel simulation. arXiv 2016, arXiv:1604.00648. [Google Scholar]
- Ayach, O.E.; Rajagopal, S.; Abu-Surra, S.; Pi, Z.; Heath, R.W., Jr. Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans. Wirel. Commun. 2014, 13, 1499–1513. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Dai, L.; Shim, B.; Wang, Z.; Heath, R.W., Jr. Channel feedback based on AoD-adaptive subspace codebook in FDD massive MIMO systems. IEEE Trans. Commun. 2018, 66, 5235–5248. [Google Scholar] [CrossRef] [Green Version]
- Xie, N.; Zhang, S. Blind authentication at the physical layer under time-varying fading channels. IEEE J. Sel. Areas Commun. 2018, 36, 1465–1479. [Google Scholar] [CrossRef]
- Médard, M. The effect upon channel capacity in wireless communications of perfect and imperfect knowledge of the channel. IEEE Trans. Inf. Theory 2000, 46, 933–946. [Google Scholar] [CrossRef] [Green Version]
- Kay, S.; Hall, P. Fundamentals of statistical signal processing, Volume II: Detection theory. Technometrics 1993, 37, 465–466. [Google Scholar]
- Zaidi, A.; Vandendorpe, L. Coding schemes for relay-assisted information embedding. IEEE Trans. Inf. Forensics Secur. 2009, 4, 70–85. [Google Scholar] [CrossRef]
- Tse, D.; Viswanath, P. Fundamentals of Wireless Communication; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Goldsmith, A. Wireless Communications; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Liu, Y.; He, J. Utilizing Multi-Dimensional MmWave MIMO Channel Features for Location Verification. Sensors 2022, 22, 9202. https://doi.org/10.3390/s22239202
Zhang P, Liu Y, He J. Utilizing Multi-Dimensional MmWave MIMO Channel Features for Location Verification. Sensors. 2022; 22(23):9202. https://doi.org/10.3390/s22239202
Chicago/Turabian StyleZhang, Pinchang, Yangyang Liu, and Ji He. 2022. "Utilizing Multi-Dimensional MmWave MIMO Channel Features for Location Verification" Sensors 22, no. 23: 9202. https://doi.org/10.3390/s22239202
APA StyleZhang, P., Liu, Y., & He, J. (2022). Utilizing Multi-Dimensional MmWave MIMO Channel Features for Location Verification. Sensors, 22(23), 9202. https://doi.org/10.3390/s22239202