Improving the Accuracy of the Effective Atomic Number (EAN) and Relative Electron Density (RED) with Stoichiometric Calibration on PCD-CT Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stoichiometric Calibration
2.1.1. Extraction of EAN and RED
2.1.2. Tissue-Equivalent Materials
2.2. PCD-CT System
2.2.1. Specification of PCD-CT
2.2.2. Data Acquisition
3. Results
3.1. Stoichiometric Calibration
3.2. EAN and RED Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hamid, S.; Nasir, M.U.; So, A.; Andrews, G.; Nicolaou, S.; Qamar, S.R. Clinical Applications of Dual-Energy CT. Korean J. Radiol. 2021, 22, 970–982. [Google Scholar] [CrossRef] [PubMed]
- Patel, B.N.; Thomas, J.V.; Lockhart, M.E.; Berland, L.L.; Morgan, D.E. Single-source dual-energy spectral multidetector CT of pancreatic adenocarcinoma: Optimization of energy level viewing significantly increases lesion contrast. Clin. Radiol. 2013, 68, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.; Jinzaki, M.; Tanami, Y.; Ueno, A.; Yamada, M.; Kuribayashi, S. Virtual monochromatic spectral imaging with fast kilovoltage switching: Improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology 2011, 259, 257–262. [Google Scholar] [CrossRef] [PubMed]
- De Cecco, C.N.; Darnell, A.; Rengo, M.; Muscogiuri, G.; Bellini, D.; Ayuso, C.; Laghi, A. Dual-energy CT: Oncologic applications. AJR Am. J. Roentgenol. 2012, 199, S98–S105. [Google Scholar] [CrossRef] [PubMed]
- Coursey, C.A.; Nelson, R.C.; Boll, D.T.; Paulson, E.K.; Ho, L.M.; Neville, A.M.; Marin, D.; Gupta, R.T.; Schindera, S.T. Dual-energy multidetector CT: How does it work, what can it tell us, and when can we use it in abdominopelvic imaging? Radiographics 2010, 30, 1037–1055. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Park, K.K.; Song, H.T.; Kim, S.; Suh, J.S. Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software. Eur. Radiol. 2012, 22, 1331–1340. [Google Scholar] [CrossRef] [PubMed]
- Bazalova, M.; Carrier, J.F.; Beaulieu, L.; Verhaegen, F. Dual-energy CT-based material extraction for tissue segmentation in Monte Carlo dose calculations. Phys. Med. Biol. 2008, 53, 2439–2456. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, K.; Iwanczyk, J.S. Vision 20/20: Single photon counting x-ray detectors in medical imaging. Med. Phys. 2013, 40, 100901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Meier, D.; Mikkelsen, S.; Maehlum, G.E.; Wagenaar, D.J.; Tsui, B.M.; Patt, B.E.; Frey, E.C. MicroCT with energy-resolved photon-counting detectors. Phys. Med. Biol. 2011, 56, 2791–2816. [Google Scholar] [CrossRef] [PubMed]
- Goodsitt, M.M.; Christodoulou, E.G.; Larson, S.C. Accuracies of the synthesized monochromatic CT numbers and effective atomic numbers obtained with a rapid kVp switching dual energy CT scanner. Med. Phys. 2011, 38, 2222–2232. [Google Scholar] [CrossRef] [PubMed]
- Tatsugami, F.; Higaki, T.; Kiguchi, M.; Tsushima, S.; Taniguchi, A.; Kaichi, Y.; Yamagami, T.; Awai, K. Measurement of electron density and effective atomic number by dual-energy scan using a 320-detector computed tomography scanner with raw data-based analysis: A phantom study. J. Comput. Assist. Tomogr. 2014, 38, 824–827. [Google Scholar] [CrossRef]
- Lee, S.H.; Sunaguchi, N.; Nagao, A.; Hirano, Y.; Sakurai, H.; Kano, Y.; Torikoshi, M.; Kanai, T.; Tashiro, M. Calculation of Stopping-Power Ratio from Multiple CT Numbers Using Photon-Counting CT System: Two- and Three-Parameter-Fitting Method. Sensors 2021, 21, 1215. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Nakashima, T.; Onishi, Y.; Koike, A.; Shinomiya, B.; Morii, H.; Neo, Y.; Mimura, H.; Aoki, T. Atomic number and electron density measurement using a conventional X-ray tube and a CdTe detector. Jpn. J. Appl. Phys. 2008, 47, 7317–7323. [Google Scholar] [CrossRef]
- Sellerer, T.; Ehn, S.; Mechlem, K.; Duda, M.; Epple, M.; Noël, P.B.; Pfeiffer, F. Quantitative dual-energy micro-CT with a photon-counting detector for material science and non-destructive testing. PLoS ONE 2019, 14, e0219659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamashita, Y.; Kimura, M.; Kitahara, M.; Hamaguchi, T.; Kanno, I.; Ohtaka, M.; Hashimoto, M.; Ara, K.; Onabe, H. Measurment of effective atomic numbers using energy-resolved computed tomography. J. Nucl. Sci. Technol. 2014, 51, 1256–1263. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.; Kim, B.; Kim, J.I.; Park, J.M.; Choi, C.H. Deriving the effective atomic number with a dual-energy image set acquired by the big bore CT simulator. J. Radiat. Prot. Res. 2020, 45, 171–177. [Google Scholar] [CrossRef]
- Bourque, A.E.; Carrier, J.F.; Bouchard, H. A stoichiometric calibration method for dual energy computed tomography. Phys. Med. Biol. 2014, 59, 2059–2088. [Google Scholar] [CrossRef] [Green Version]
- Schneider, U.; Pedroni, E.; Lomax, A. The calibration of CT Hounsfield units for radiotherapy treatment planning. Phys. Med. Biol. 1996, 41, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, C.J.; Leon, S.M.; Olguin, C.A.; Arreola, M.M. Accuracy and reproducibility of effective atomic number and electron density measurements from sequential dual energy CT. Med. Phys. 2021, 48, 3525–3539. [Google Scholar] [CrossRef]
- Hua, C.H.; Shapira, N.; Merchant, T.E.; Klahr, P.; Yagil, Y. Accuracy of electron density, effective atomic number, and iodine concentration determination with a dual-layer dual-energy computed tomography system. Med. Phys. 2018, 45, 2486–2497. [Google Scholar] [CrossRef]
- Leng, S.; Bruesewitz, M.; Tao, S.; Rajendran, K.; Halaweish, A.F.; Campeau, N.G.; Fletcher, J.G.; McCollough, C.H. Photon-counting Detector CT: System Design and Clinical Applications of an Emerging Technology. Radiographics 2019, 39, 729–743. [Google Scholar] [CrossRef] [PubMed]
No. | Materials | EAN 1 | RED 2 |
---|---|---|---|
1 | Adipose | 6.44 | 0.940 |
2 | Breast | 6.90 | 0.970 |
3 | Solid Water | 7.24 | 1.000 |
4 | Brain | 7.42 | 1.020 |
5 | Liver | 7.60 | 1.050 |
6 | Iodine 2 mg/mL | 8.37 | 1.003 |
7 | Inner Bone | 10.01 | 1.161 |
8 | Cortical Bone | 13.29 | 1.748 |
Material | EB 1 | FS 2 |
---|---|---|
k1,L | −0.0309 | −0.0367 |
k2,L | 0.0064 | 0.0049 |
k1,H | 1.7090 | 1.4060 |
k2,H | 0.1889 | 0.1065 |
Material | EB | FS |
---|---|---|
k1(E) | 0.0107 | 0.0297 |
k2(E) | −1.538 × 10−5 | −8.109 × 10−5 |
No. | Materials | EAN | RED | ||||
---|---|---|---|---|---|---|---|
Theory | EB | FS | Theory | EB | FS | ||
1 | Adipose | 6.44 | 6.69 (3.95%) | 6.60 (2.54%) | 0.940 | 0.974 (3.57%) | 1.030 (9.55%) |
2 | Breast | 6.90 | 7.03 (1.91%) | 6.84 (−0.82%) | 0.970 | 1.001 (3.24%) | 1.050 (8.27%) |
3 | Solid Water | 7.24 | 7.24 (0.01%) | 7.13 (−1.47%) | 1.000 | 1.004 (0.38%) | 1.040 (3.98%) |
4 | Brain | 7.42 | 7.23 (−2.60%) | 7.27 (−1.98%) | 1.020 | 1.018 (−0.18%) | 1.049 (2.82%) |
5 | Liver | 7.60 | 7.38 (−2.89%) | 7.33 (−3.49%) | 1.050 | 1.077 (2.59%) | 1.116 (6.29%) |
6 | Iodine 2 mg/mL | 8.37 | 8.53 (1.86%) | 8.42 (0.54%) | 1.003 | 1.023 (2.03%) | 1.044 (4.05%) |
7 | Inner Bone | 10.01 | 10.33 (3.19%) | 10.30 (2.93%) | 1.161 | 1.153 (−0.65%) | 1.161 (0.03%) |
8 | Cortical Bone | 13.29 | 12.84 (−3.42%) | 12.95 (−2.54%) | 1.748 | 1.762 (0.81%) | 1.719 (−1.64%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, K.; Kim, D.; Lee, S. Improving the Accuracy of the Effective Atomic Number (EAN) and Relative Electron Density (RED) with Stoichiometric Calibration on PCD-CT Images. Sensors 2022, 22, 9220. https://doi.org/10.3390/s22239220
Son K, Kim D, Lee S. Improving the Accuracy of the Effective Atomic Number (EAN) and Relative Electron Density (RED) with Stoichiometric Calibration on PCD-CT Images. Sensors. 2022; 22(23):9220. https://doi.org/10.3390/s22239220
Chicago/Turabian StyleSon, Kihong, Daehong Kim, and Sooyeul Lee. 2022. "Improving the Accuracy of the Effective Atomic Number (EAN) and Relative Electron Density (RED) with Stoichiometric Calibration on PCD-CT Images" Sensors 22, no. 23: 9220. https://doi.org/10.3390/s22239220
APA StyleSon, K., Kim, D., & Lee, S. (2022). Improving the Accuracy of the Effective Atomic Number (EAN) and Relative Electron Density (RED) with Stoichiometric Calibration on PCD-CT Images. Sensors, 22(23), 9220. https://doi.org/10.3390/s22239220