A 1-μm-Band Injection-Locked Semiconductor Laser with a High Side-Mode Suppression Ratio and Narrow Linewidth
Abstract
:1. Introduction
2. Experiment Process
3. Results
3.1. Laser Spectra and P−I−V Characteristics
3.2. Polarization Characteristics
3.3. Linewidth and Relative Intensity Noise Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zervas, M.N.; Codemard, C.A. High Power Fiber Lasers: A Review. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 219–241. [Google Scholar] [CrossRef]
- Yang, C.S.; Guan, X.C.; Zhao, Q.L.; Lin, W.; Li, C.; Gan, J.L.; Qian, Q.; Feng, Z.M.; Yang, Z.M.; Xu, S.H. 15 W high OSNR kHz-linewidth linearlypolarized all-fiber single-frequency MOPA at 1.6 μm. Opt. Express 2018, 26, 12863–12869. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-P.; Chen, H.-W.; Hou, J.; Liu, Z.-J. 100 W all fiber picosecond MOPA laser. Opt. Express 2009, 17, 24008–24012. [Google Scholar] [CrossRef]
- Loftus, T.H.; Thomas, A.M.; Hoffman, P.R.; Norsen, M.; Royse, R.; Liu, A.; Honea, E.C. Spectrally Beam-Combined Fiber Lasers for High-Average-Power Applications. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 487–497. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, Y.; Wang, J.; Hu, M.; Liu, G.; Zhao, X.; Chen, X.; Liu, K.; Zhao, C.; He, B.; et al. 108 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation. Opt. Express 2016, 24, 12063–12071. [Google Scholar] [CrossRef] [PubMed]
- Augst, S.J.; Ranka, J.K.; Fan, T.Y.; Sánchez, A. Beam combining of ytterbium fiber amplifiers (Invited). J. Opt. Soc. Am. B 2007, 24, 1707–1715. [Google Scholar] [CrossRef]
- Kane, T.J.; Byer, R.L. Monolithic, unidirectional single-mode Nd:YAG ring laser. Opt. Lett. 1985, 10, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Willke, B. Stabilized lasers for advanced gravitational wave detectors. Laser Photon. Rev. 2010, 4, 780–794. [Google Scholar] [CrossRef] [Green Version]
- Qi, Z.; Yin, T.; Jiang, X.; Chen, F.; He, S. Narrow-linewidth high-efficiency single-frequency ytterbium-doped fiber laser with highly linear polarization at 1064 nm. Appl. Opt. 2021, 60, 2833–2838. [Google Scholar] [CrossRef]
- Yang, C.S.; Zhao, Q.L.; Feng, Z.M.; Peng, M.Y.; Yang, Z.M.; Xu, S.H. 1120 nm kHz-linewidth single-polarization single-frequency Yb-doped phosphate fiber laser. Opt. Express 2016, 24, 29794–29799. [Google Scholar] [CrossRef]
- Bartolo, R.E.; Tveten, A.; Kirkendall, C.K. The quest for inexpensive, compact, low phase noise laser sources for fiber optic sensing applications. Proc. SPIE 2009, 7503, 750370. [Google Scholar] [CrossRef]
- Paschke, K.; Spießberger, S.; Kaspari, C.; Feise, D.; Fiebig, C.; Blume, G.; Wenzel, H.; Wicht, A.; Erbert, G. High-power dis-tributed Bragg reflector ridge-waveguide diode laser with very small spectral linewidth. Opt. Lett. 2010, 35, 402–404. [Google Scholar] [CrossRef] [PubMed]
- Spiessberger, S.; Schiemangk, M.; Wicht, A.; Wenzel, H.; Brox, O.; Erbert, G. Narrow Linewidth DFB Lasers Emitting Near a Wavelength of 1064 nm. J. Light. Technol. 2010, 28, 2611–2616. [Google Scholar] [CrossRef]
- Shi, Y.; Li, S.; Zhou, Y.; Lu, L.; Li, L.; Feng, Y.; Chen, X. Improved l/4 phase-shifted DFB semiconductor laser with spatial hole burning compensation using grating chirp. Opt. Laser Technol. 2012, 44, 2443–2448. [Google Scholar] [CrossRef]
- Hai, Y.; Zou, Y.; Ma, X.; Fan, J.; Wang, H.; Zhu, L.; Shi, L. Narrow-linewidth surface-emitting distributed feedback semiconductor lasers with low threshold current. Opt. Laser Technol. 2021, 135, 106631. [Google Scholar] [CrossRef]
- Schiemangk, M.; Wichta, A.; Tränklea, G. Ultra-narrow linewidth diode laser based on resonant optical feedback. Proc. SPIE 2019, 10910, 396–402. [Google Scholar]
- Duca, L.; Perego, E.; Berto, F.; Sias, C. Design of a Littrow-type diode laser with independent control of cavity length and grating rotation. Opt. Lett. 2021, 46, 2840–2843. [Google Scholar] [CrossRef]
- Shin, D.K.; Henson, B.M.; Khakimov, R.I.; Ross, J.A.; Dedman, C.J.; Hodgman, S.S.; Baldwin, K.G.H.; Truscott, A.G. Widely tunable, narrow linewidth external-cavity gain chip laser for spectroscopy between 1.0–1.1 µm. Opt. Express 2016, 24, 27403–27414. [Google Scholar] [CrossRef] [Green Version]
- Numata, K.; Alalusi, M.; Stolpner, L.; Margaritis, G.; Camp, J.; Krainak, M. Characteristics of the single-longitudinal-mode planar-waveguide external cavity diode laser at 1064 nm. Opt. Lett. 2014, 39, 2101–2104. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, L. Narrow-linewidth, tunable external cavity dual-band diode lasers through InP/GaAs Si3N4 hybrid inte-gration. Opt. Express 2019, 27, 2354–2362. [Google Scholar] [CrossRef]
- Bakoz, A.P.; Liles, A.A.; González-Fernández, A.A.; Habruseva, T.; Hu, C.; Viktorov, E.A.; Hegarty, S.P.; O’Faolain, L. Wavelength stability in a hybrid photonic crystal laser through controlled nonlinear absorptive heating in the reflector. Light. Sci. Appl. 2018, 7, 39. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.G.; Holmes, C.; Berry, S.A.; Gates, J.C.; Jantzen, A.; Ferreiro, T.I.; Smith, P.G.R. External cavity diode laser based upon an FBG in an integrated optical fiber platform. Opt. Express 2016, 24, 8391–8398. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.J.; Krämer, R.G.; Nolte, S.; Withford, M.J.; Steel, M.J. Detuning in apodized point-by-point fiber Bragg gratings: Insights into the grating morphology. Opt. Express 2013, 21, 26854–26867. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Zheng, Z.; Wang, B.; Pan, X.; Liu, S.; Tian, Z.; Chen, C.; Yu, Y. Femtosecond Laser Fabricated Apodized Fiber Bragg Gratings Based on Energy Regulation. Photonics 2021, 8, 110. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, X.; Wei, W.; Chen, Y.; Qin, L.; Ning, Y.; Yu, Y. Multi-resonance peaks fiber Bragg gratings based on large-ly-chirped structure. Opt. Commun. 2018, 412, 150–154. [Google Scholar] [CrossRef]
- Malinauskas, M.; Žukauskas, A.; Hasegawa, S.; Hayasaki, Y.; Mizeikis, V.; Buividas, R.; Juodkazis, S. Ultrafast laser processing of materials: From science to industry. Light. Sci. Appl. 2016, 5, e16133. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zhang, J.; Ning, Y.; Zeng, Y.; Zhang, J.; Zhang, X.; Qin, L.; Wang, L. Bimodal-sized quantum dots for broad spectral bandwidth emitter. Opt. Express 2015, 23, 32230–32237. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Wu, H.; Zhang, J.; Chen, C.; Qin, L.; Wang, L. A tunable external cavity laser operating at excited states of bimodal-sized quantum-dot. Jpn. J. Appl. Phys. 2019, 58, 051013. [Google Scholar] [CrossRef]
- Jovanovic, N.; Thomas, J.; Williams, R.J.; Steel, M.J.; Marshall, G.D.; Fuerbach, A.; Nolte, S.; Tünnermann, A.; Withford, M.J. Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers. Opt. Express 2009, 17, 6082–6095. [Google Scholar] [CrossRef]
- Luo, X.-C.; Chen, C.; Ning, Y.-Q.; Zhang, X.; Qiu, C.; Chen, J.-Q.; Yin, X.-J.; Qin, L.; Wang, L.-J. High linear polarization, narrow linewidth hybrid semiconductor laser with an external birefringence waveguide Bragg grating. Opt. Express 2021, 29, 33109. [Google Scholar] [CrossRef]
- Xu, D.; Yang, F.; Chen, D.; Wei, F.; Cai, H.; Fang, Z.; Qu, R. Laser phase and frequency noise measurement by Michelson interferometer composed of a 3 × 3 optical fiber coupler. Opt. Express 2015, 23, 22386–22393. [Google Scholar] [CrossRef] [PubMed]
- Di Domenico, G.; Schilt, S.; Thomann, P. Simple approach to the relation between laser frequency noise and laser line shape. Appl. Opt. 2010, 49, 4801–4807. [Google Scholar] [CrossRef] [PubMed]
- Kazarinov, R.; Henry, C. The relation of line narrowing and chirp reduction resulting from the coupling of a semiconductor laser to passive resonator. IEEE J. Quantum Electron. 1987, 23, 1401–1409. [Google Scholar] [CrossRef]
- Von Bandel, N.; Myara, M.; Sellahi, M.; Souici, T.; Dardaillon, R.; Signoret, P. Time-dependent laser linewidth: Beat-note digital acquisition and numerical analysis. Opt. Express 2016, 24, 27961–27978. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.-Q.; Chen, C.; Guo, Q.; Qin, L.; Zhang, J.-W.; Peng, H.-Y.; Zhou, Y.-L.; Sun, J.-J.; Wu, H.; Yu, Y.-S.; et al. A 1-μm-Band Injection-Locked Semiconductor Laser with a High Side-Mode Suppression Ratio and Narrow Linewidth. Sensors 2022, 22, 9239. https://doi.org/10.3390/s22239239
Chen J-Q, Chen C, Guo Q, Qin L, Zhang J-W, Peng H-Y, Zhou Y-L, Sun J-J, Wu H, Yu Y-S, et al. A 1-μm-Band Injection-Locked Semiconductor Laser with a High Side-Mode Suppression Ratio and Narrow Linewidth. Sensors. 2022; 22(23):9239. https://doi.org/10.3390/s22239239
Chicago/Turabian StyleChen, Jia-Qi, Chao Chen, Qi Guo, Li Qin, Jian-Wei Zhang, Hang-Yu Peng, Yin-Li Zhou, Jing-Jing Sun, Hao Wu, Yong-Sen Yu, and et al. 2022. "A 1-μm-Band Injection-Locked Semiconductor Laser with a High Side-Mode Suppression Ratio and Narrow Linewidth" Sensors 22, no. 23: 9239. https://doi.org/10.3390/s22239239
APA StyleChen, J.-Q., Chen, C., Guo, Q., Qin, L., Zhang, J.-W., Peng, H.-Y., Zhou, Y.-L., Sun, J.-J., Wu, H., Yu, Y.-S., Ning, Y.-Q., & Wang, L.-J. (2022). A 1-μm-Band Injection-Locked Semiconductor Laser with a High Side-Mode Suppression Ratio and Narrow Linewidth. Sensors, 22(23), 9239. https://doi.org/10.3390/s22239239