A Guided Tutorial on Modelling Human Event-Related Potentials with Recurrent Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coding Environment
2.2. Data and Preprocessing
2.3. Modelling
2.3.1. Inputs and Output Labels
2.3.2. Model Architecture and Training
2.3.3. Cross-Validation and Final Model
2.3.4. Analysis of Model Behavior
3. Results
3.1. Cross-Validation Performance
3.2. Hidden Unit Colormaps
3.3. Hidden Unit Categorization
3.4. Dynamics of Hidden Unit Activations
3.5. Principal Component Analysis
3.6. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tudor, M.; Tudor, L.; Tudor, K.I. Hans Berger (1873–1941)—The history of electroencephalography. Acta Med. Croat. 2005, 59, 307–313. [Google Scholar]
- Friedman, D.; Cycowicz, Y.M.; Gaeta, H. The Novelty P3: An Event-Related Brain Potential (ERP) Sign of the Brain’s Evaluation of Novelty. Neurosci. Biobehav. Rev. 2001, 25, 355–373. [Google Scholar] [CrossRef] [PubMed]
- Garrido, M.I.; Kilner, J.M.; Stephan, K.E.; Friston, K.J. The Mismatch Negativity: A Review of Underlying Mechanisms. Clin. Neurophysiol. 2009, 120, 453–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Näätänen, R.; Paavilainen, P.; Rinne, T.; Alho, K. The Mismatch Negativity (MMN) in Basic Research of Central Auditory Processing: A Review. Clin. Neurophysiol. 2007, 118, 2544–2590. [Google Scholar] [CrossRef] [PubMed]
- Kononowicz, T.W.; Penney, T.B. The Contingent Negative Variation (CNV): Timing Isn’t Everything. Curr. Opin. Behav. Sci. 2016, 8, 231–237. [Google Scholar] [CrossRef]
- Schröger, E.; Wolff, C. Attentional Orienting and Reorienting Is Indicated by Human Event-Related Brain Potentials. Neuroreport 1998, 9, 3355–3358. [Google Scholar] [CrossRef] [PubMed]
- Tecce, J.J. Contingent Negative Variation (CNV) and Psychological Processes in Man. Psychol. Bull. 1972, 77, 73–108. [Google Scholar] [CrossRef]
- van Rijn, H.; Kononowicz, T.; Vidal, F.; Casini, L.; Wiener, M.; Penney, T.B.; Ng, K.K. The Role of the SMA and the Contingent Negative Variation in Interval Timing. Procedia-Soc. Behav. Sci. 2014, 126, 27–28. [Google Scholar] [CrossRef] [Green Version]
- Gonda, S.; Tarrasch, R.; Ben Shalom, D. The Functional Significance of the P600: Some Linguistic P600′s Do Localize to Language Areas. Medicine 2020, 99, e23116. [Google Scholar] [CrossRef]
- Roll, M.; Horne, M.; Lindgren, M. Activating without Inhibiting: Left-Edge Boundary Tones and Syntactic Processing. J. Cogn. Neurosci. 2011, 23, 1170–1179. [Google Scholar] [CrossRef]
- O’Reilly, J.A.; Angsuwatanakul, T.; Wehrman, J. Decoding Violated Sensory Expectations from the Auditory Cortex of Anaesthetised Mice: Hierarchical Recurrent Neural Network Depicts Separate ‘Danger’ and ‘Safety’ Units. Eur. J. Neurosci. 2022, 56, 4154–4175. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, J.A. Recurrent Neural Network Model of Human Event-Related Potentials in Response to Intensity Oddball Stimulation. Neuroscience 2022, 504, 63–74. [Google Scholar] [CrossRef]
- Bennington, J.Y.; Polich, J. Comparison of P300 from Passive and Active Tasks for Auditory and Visual Stimuli. Int. J. Psychophysiol. 1999, 34, 171–177. [Google Scholar] [CrossRef]
- Katayama, J.; Polich, J. Auditory and Visual P300 Topography from a 3 Stimulus Paradigm. Clin. Neurophysiol. 1999, 110, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Picton, T.W. The P300 Wave of the Human Event-Related Potential. J. Clin. Neurophysiol. 1992, 9, 456–479. [Google Scholar] [CrossRef] [PubMed]
- Polich, J. Updating P300: An Integrative Theory of P3a and P3b. Clin. Neurophysiol. 2007, 118, 2128–2148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polich, J.; Kok, A. Cognitive and Biological Determinants of P300: An Integrative Review. Biol. Psychol. 1995, 41, 103–146. [Google Scholar] [CrossRef]
- Frodl-Bauch, T.; Gallinat, J.; Meisenzahl, E.M.; Möller, H.J.; Hegerl, U. P300 Subcomponents Reflect Different Aspects of Psychopathology in Schizophrenia. Biol. Psychiatry 1999, 45, 116–126. [Google Scholar] [CrossRef]
- Reinsel, R.A.; Veselis, R.A.; Wronski, M.; Marino, P. The P300 Event-Related Potential during Propofol Sedation: A Possible Marker for Amnesia? Br. J. Anaesth. 1995, 74, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-Y.; Wu, H.-Y.; Lu, H.-T.; Huang, T.-T.; Zhang, H.; Zhang, T. Assessment of Mismatch Negativity and P300 Response in Patients with Disorders of Consciousness. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 4896–4906. [Google Scholar]
- Guy, V.; Soriani, M.H.; Bruno, M.; Papadopoulo, T.; Desnuelle, C.; Clerc, M. Brain Computer Interface with the P300 Speller: Usability for Disabled People with Amyotrophic Lateral Sclerosis. Ann. Phys. Rehabil. Med. 2018, 61, 5–11. [Google Scholar] [CrossRef]
- Kirasirova, L.; Bulanov, V.; Ossadtchi, A.; Kolsanov, A.; Pyatin, V.; Lebedev, M. A P300 Brain-Computer Interface With a Reduced Visual Field. Front. Neurosci. 2020, 14, 1246. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.; Polich, J. On the Number of Trials Needed for P300. Int. J. Psychophysiol. 1997, 25, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Kluyver, T.; Ragan-Kelley, B.; Pérez, F.; Granger, B.; Bussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J.; Grout, J.; Corlay, S.; et al. Jupyter Notebook—A Publishing Format for Reproducible Computational Workflows; Loizides, F., Schmidt, B., Eds.; Academic Publishing: Cambridge, MA, USA, 2016; pp. 87–90. [Google Scholar]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Gramfort, A.; Luessi, M.; Larson, E.; Engemann, D.A.; Strohmeier, D.; Brodbeck, C.; Goj, R.; Jas, M.; Brooks, T.; Parkkonen, L.; et al. MEG and EEG Data Analysis with MNE-Python. Front. Neurosci. 2013, 7, 267. [Google Scholar] [CrossRef] [Green Version]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array Programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Jones, E.; Oliphant, T.; Peterson, P. Others SciPy: Open Source Scientific Tools for Python. 2001. Available online: http://www.scipy.org/ (accessed on 29 September 2022).
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Kappenman, E.S.; Farrens, J.L.; Zhang, W.; Stewart, A.X.; Luck, S.J. ERP CORE: An Open Resource for Human Event-Related Potential Research. Neuroimage 2021, 225, 117465. [Google Scholar] [CrossRef]
- Glorot, X.; Bengio, Y. Understanding the Difficulty of Training Deep Feedforward Neural Networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; Volume 9, pp. 249–256. [Google Scholar]
- Saxe, A.M.; McClelland, J.L.; Ganguli, S. Exact Solutions to the Nonlinear Dynamics of Learning in Deep Linear Neural Networks. arXiv 2013, arXiv:1312.6120. [Google Scholar]
- Sakata, S.; Harris, K.D. Laminar Structure of Spontaneous and Sensory-Evoked Population Activity in Auditory Cortex. Neuron 2009, 64, 404–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olshausen, B.A. Principles of Image Representation in Visual Cortex. Vis. Neurosci. 2003, 2, 1603–1615. [Google Scholar]
- Vinje, W.E.; Gallant, J.L. Sparse Coding and Decorrelation in Primary Visual Cortex During Natural Vision. Science 2000, 287, 1273–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacigalupo, F.; Luck, S.J. Lateralized Suppression of Alpha-Band EEG Activity as a Mechanism of Target Processing. J. Neurosci. 2019, 39, 900–917. [Google Scholar] [CrossRef] [Green Version]
- Hanslmayr, S.; Klimesch, W.; Sauseng, P.; Gruber, W.; Doppelmayr, M.; Freunberger, R.; Pecherstorfer, T.; Birbaumer, N. Alpha Phase Reset Contributes to the Generation of ERPs. Cereb. Cortex 2007, 17, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.R.; Molano-Mazón, M. Towards the next Generation of Recurrent Network Models for Cognitive Neuroscience. Curr. Opin. Neurobiol. 2021, 70, 182–192. [Google Scholar] [CrossRef]
- Barak, O. Recurrent Neural Networks as Versatile Tools of Neuroscience Research. Curr. Opin. Neurobiol. 2017, 46, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Annabi, L.; Pitti, A.; Quoy, M. Continual Sequence Modeling With Predictive Coding. Front. Neurorobotics 2022, 16, 99. [Google Scholar] [CrossRef]
- Pennington, J.R.; David, S.V. Can Deep Learning Provide a Generalizable Model for Dynamic Sound Encoding in Auditory Cortex? bioRxiv 2022. [Google Scholar] [CrossRef]
- Rudraraju, S.; Theilman, B.; Turvey, M.; Gentner, T. Predictive Coding in Auditory Cortical Neurons of Songbirds. In Proceedings of the Conference on Cognitive Computational Neuroscience, San Francisco, CA, USA, 25–28 August 2022; pp. 148–150. Available online: https://2022.ccneuro.org/proceedings/0000148.pdf (accessed on 1 October 2022).
- Kuo, T.-Y.; Liao, Y.; Li, K.; Hong, B.; Hu, X. Inferring Mechanisms of Auditory Attentional Modulation with Deep Neural Networks. Neural Comput. 2022, 34, 2273–2293. [Google Scholar] [CrossRef]
- Zubarev, I.; Vranou, G.; Parkkonen, L. MNEflow: Neural Networks for EEG/MEG Decoding and Interpretation. SoftwareX 2022, 17, 100951. [Google Scholar] [CrossRef]
- Kriegeskorte, N.; Mur, M.; Bandettini, P. Representational Similarity Analysis-Connecting the Branches of Systems Neuroscience. Front. Syst. Neurosci. 2008, 2, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, S.; Galetta, S.L. Anatomy and Physiology of the Afferent Visual System. Handb. Clin. Neurol. 2011, 102, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Fowler, C.G.; Leigh-Paffenroth, E.D. Hearing. In Encyclopedia of Gerontology; Elsevier: Amsterdam, The Netherlands, 2007; pp. 662–671. ISBN 9780123708700. [Google Scholar]
- Narayanan, B.; O’Neil, K.; Berwise, C.; Stevens, M.C.; Calhoun, V.D.; Clementz, B.A.; Tamminga, C.A.; Sweeney, J.A.; Keshavan, M.S.; Pearlson, G.D. Resting State Electroencephalogram Oscillatory Abnormalities in Schizophrenia and Psychotic Bipolar Patients and Their Relatives from the Bipolar and Schizophrenia Network on Intermediate Phenotypes Study. Biol. Psychiatry 2014, 76, 456–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quigley, C. Forgotten Rhythms? Revisiting the First Evidence for Rhythms in Cognition. Eur. J. Neurosci. 2021, 55, 3266–3276. [Google Scholar] [CrossRef]
- Luck, S.J. An Introduction to the Event-Related Potential Technique; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- O’Reilly, J.A. Modelling Mouse Auditory Response Dynamics along a Continuum of Consciousness Using a Deep Recurrent Neural Network. J. Neural Eng. 2022, 19, 056023. [Google Scholar] [CrossRef]
Latency Range | Layer 2 | Layer 3 | Layer 3 | Layer 4 | Total | |||||
---|---|---|---|---|---|---|---|---|---|---|
T | NT | T | NT | T | NT | T | NT | T | NT | |
No peak | 14 | 13 | 20 | 19 | 11 | 11 | 17 | 17 | 62 | 60 |
<0.0 s | 2 | 9 | 4 | 3 | 4 | 4 | 4 | 6 | 14 | 22 |
0.0 to 0.1 s | 7 | 21 | 6 | 17 | 13 | 15 | 10 | 11 | 36 | 64 |
0.1 to 0.2 s | 0 | 0 | 2 | 0 | 0 | 3 | 5 | 6 | 7 | 9 |
0.2 to 0.3 s | 28 | 13 | 9 | 2 | 9 | 2 | 1 | 0 | 47 | 17 |
0.3 to 0.4 s | 10 | 8 | 13 | 15 | 5 | 1 | 2 | 0 | 30 | 24 |
0.4 to 0.6 s | 3 | 0 | 9 | 8 | 10 | 20 | 23 | 22 | 45 | 50 |
>0.6 s | 0 | 0 | 1 | 0 | 12 | 8 | 2 | 2 | 15 | 10 |
Total | 64 | 64 | 64 | 64 | 64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Reilly, J.A.; Wehrman, J.; Sowman, P.F. A Guided Tutorial on Modelling Human Event-Related Potentials with Recurrent Neural Networks. Sensors 2022, 22, 9243. https://doi.org/10.3390/s22239243
O’Reilly JA, Wehrman J, Sowman PF. A Guided Tutorial on Modelling Human Event-Related Potentials with Recurrent Neural Networks. Sensors. 2022; 22(23):9243. https://doi.org/10.3390/s22239243
Chicago/Turabian StyleO’Reilly, Jamie A., Jordan Wehrman, and Paul F. Sowman. 2022. "A Guided Tutorial on Modelling Human Event-Related Potentials with Recurrent Neural Networks" Sensors 22, no. 23: 9243. https://doi.org/10.3390/s22239243
APA StyleO’Reilly, J. A., Wehrman, J., & Sowman, P. F. (2022). A Guided Tutorial on Modelling Human Event-Related Potentials with Recurrent Neural Networks. Sensors, 22(23), 9243. https://doi.org/10.3390/s22239243