Evidence of Nonlinear Seismic Effects in the Earth from Downhole Distributed Acoustic Sensors
Abstract
:1. Introduction
2. Nonlinear Elasticity
3. Experiment 1: Vibroseis Source
4. Experiment 2: Permanent Surface Orbital Vibrators
5. Experiment 3: Laboratory Tests
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bourbie, T.; Coussy, O.; Zinszner, B. Acoustics of Porous Media; Editions TECHNIP: Paris, France, 1987. [Google Scholar]
- Walsh, J.B. The effect of cracks on the compressibility of rock. J. Geophys. Res. (1896–1977) 1965, 70, 381–389. [Google Scholar] [CrossRef]
- Beresnev, I.A.; Nikolaev, A.V. Experimental investigations of nonlinear seismic effects. Phys. Earth Planet. Inter. 1988, 50, 83–87. [Google Scholar] [CrossRef]
- Beresnev, I.A.; Nikolaevskiy, V.N. A model for nonlinear seismic waves in a medium with instability. Phys. D Nonlinear Phenom. 1993, 66, 1–6. [Google Scholar] [CrossRef]
- De Fazio, T.L.; Aki, K.; Alba, J. Solid earth tide and observed change in the in situ seismic velocity. J. Geophys. Res. (1896–1977) 1973, 78, 1319–1322. [Google Scholar] [CrossRef]
- Nikolaev, A.V. Problems of nonlinear seismology. Phys. Earth Planet. Inter. 1988, 50, 1–7. [Google Scholar] [CrossRef]
- Fessenden, R.A. Wireless Signaling. Application US11324402A, 26 June 1902. [Google Scholar]
- Dimitriu, P.P. Preliminary results of vibrator-aided experiments in non-linear seismology conducted at Uetze, F.R.G. Phys. Earth Planet. Inter. 1990, 63, 172–180. [Google Scholar] [CrossRef]
- Meunier, J. Seismic Acquisition from Yesterday to Tomorrow. Disting Instr. Ser. 2011, 14, 1–236. [Google Scholar]
- Eick, P.M.; Brewer, J.D. Downhole Heterodyne Eccentric Vibrator. US 2013/0188459 483 A1, 25 July 2013. [Google Scholar]
- Scott, G.L.; Pramik, W.B. Superheterodyne Seismic Vibrator and Method. US 2009/0086574 A1, 23 April 2009. [Google Scholar]
- Meegan, G.D.; Johnson, P.A.; Guyer, R.A.; McCall, K.R. Observations of nonlinear elastic wave behavior in sandstone. J. Acoust. Soc. Am. 1993, 94, 3387–3391. [Google Scholar] [CrossRef]
- Payan, C.; Garnier, V.; Moysan, J.; Johnson, P.A. Determination of third order elastic constants in a complex solid applying coda wave interferometry. Appl. Phys. Lett. 2009, 94, 011904. [Google Scholar] [CrossRef] [Green Version]
- Zhukov, A.P.; Loginov, K.I.; Shneerson, M.B.; Shulakova, V.E.; Kharisov, R.G.; Ekimenko, V.A. Nonlinear properties of vibrator-generated wavefields and their application to hydrocarbon detection. Lead. Edge 2007, 26, 1395–1402. [Google Scholar] [CrossRef]
- Shulakova, V.E. Applying nonlinear properties of geological media containing hydrocarbons in seismic profiling. Mosc. Univ. Geol. Bull. 2007, 62, 415–417. [Google Scholar] [CrossRef]
- Kuvshinov, B.N.; Smit, T.J.H.; Campman, X.H. Non-linear interaction of elastic waves in rocks. Geophys. J. Int. 2013, 194, 1920–1940. [Google Scholar] [CrossRef] [Green Version]
- Solovev, V. Experimental investigation of non-linear seismic effects. Phys. Earth Planet. Inter. 1990, 62, 271–276. [Google Scholar] [CrossRef]
- Campman, X.H.; Kuvshinov, B.N.; Smit, T.H.J. Combined-Harmonic Analysis of Seismic Data Acquired with Two Vibrators Driven at Different Frequencies; European Association of Geoscientists & Engineers: Houten, The Netherlands, 2012. [Google Scholar]
- Daley, T.M.; Miller, D.E.; Dodds, K.; Cook, P.; Freifeld, B.M. Field testing of modular borehole monitoring with simultaneous distributed acoustic sensing and geophone vertical seismic profiles at Citronelle, Alabama. Geophys. Prospect. 2016, 64, 1318–1334. [Google Scholar] [CrossRef] [Green Version]
- Pevzner, R.; Glubokovskikh, S.; Isaenkov, R.; Shashkin, P.; Tertyshnikov, K.; Yavuz, S.; Gurevich, B.; Correa, J.; Wood, T.; Freifeld, B. Monitoring subsurface changes by tracking direct-wave amplitudes and traveltimes in continuous distributed acoustic sensor VSP data. Geophysics 2022, 87, A1–A6. [Google Scholar] [CrossRef]
- Hartog, A.H. An Introduction to Distributed Optical Fibre Sensors; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Donskoy, D.M.; Khashanah, K.; McKee, T.G., Jr. Nonlinear acoustic waves in porous media in the context of Biot’s theory. J. Acoust. Soc. Am. 1997, 102, 2521–2528. [Google Scholar] [CrossRef]
- Prioul, R.; Lebrat, T. Calibration of velocity-stress relationships under hydrostatic stress for their use under non-hydrostatic stress conditions. In SEG Technical Program Expanded Abstracts 2004; Society of Exploration Geophysicists: Tulsa, OK, USA, 2004; pp. 1698–1701. [Google Scholar]
- Zulic, S.; Tertyshnikov, K.; Yurikov, A.; Sidenko, E.; Isaenkov, R.; Pevzner, R. Curtin Geolab Research Facility: Walkaway VSP with DAS and Geophones. In Proceedings of the EAGE Workshop on Fiber Optic Sensing for Energy Applications in Asia Pacific, Kuala-Lumpur, Malaysia, 9–11 November 2020; European Association of Geoscientists & Engineers: Kuala-Lumpur, Malaysia, 2020; pp. 1–5. [Google Scholar]
- Isaenkov, R.; Pevzner, R.; Glubokovskikh, S.; Yavuz, S.; Yurikov, A.; Tertyshnikov, K.; Gurevich, B.; Correa, J.; Wood, T.; Freifeld, B.; et al. An automated system for continuous monitoring of CO2 geosequestration using multi-well offset VSP with permanent seismic sources and receivers: Stage 3 of the CO2CRC Otway Project. Int. J. Greenh. Gas Control 2021, 108, 103317. [Google Scholar] [CrossRef]
- Pevzner, R.; Isaenkov, R.; Yavuz, S.; Yurikov, A.; Tertyshnikov, K.; Shashkin, P.; Gurevich, B.; Correa, J.; Glubokovskikh, S.; Wood, T.; et al. Seismic monitoring of a small CO2 injection using a multi-well DAS array: Operations and initial results of Stage 3 of the CO2CRC Otway project. Int. J. Greenh. Gas Control 2021, 110, 103437. [Google Scholar] [CrossRef]
- Freifeld, B.M.; Pevzner, R.; Dou, S.; Daley, T.; Robertson, M.; Tertyshnikov, K.; Wood, T.; Ajo-Franklin, J.; Urosevic, M.; Gurevich, B. The CO2CRC Otway Project Deployment of a Distributed Acoustic Sensing Network Coupled with Permanent Rotary Sources. In Proceedings of the 78th EAGE Conference & Exhibition 2016, Vienna, Austria, 30 May–2 June 2016; EAGE: Vienna, Austria, 2016; pp. 1–5. [Google Scholar]
- Zinszner, B.; Johnson, P.A.; Rasolofosaon, P.N.J. Influence of change in physical state on elastic nonlinear response in rock: Significance of effective pressure and water saturation. J. Geophys. Res. Solid Earth 1997, 102, 8105–8120. [Google Scholar] [CrossRef] [Green Version]
- Johnson, P.A.; Rasolofosaon, P.N.J. Manifestation of nonlinear elasticity in rock: Convincing evidence over large frequency and strain intervals from laboratory studies. Nonlin. Process. Geophys. 1996, 3, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Mikhaltsevitch, V.; Lebedev, M.; Gurevich, B. Measurements of the elastic and anelastic properties of sandstone flooded with supercritical CO2. Geophys. Prospect. 2014, 62, 1266–1277. [Google Scholar] [CrossRef]
- Mikhaltsevitch, V.; Lebedev, M.; Gurevich, B. A laboratory study of low-frequency wave dispersion and attenuation in water-saturated sandstones. Lead. Edge 2014, 33, 616–622. [Google Scholar] [CrossRef]
- Yurikov, A.; Pevzner, R.; Tertyshnikov, K.; Mikhaltsevitch, V.; Gurevich, B.; Lebedev, M. Laboratory measurements with DAS: A fast and sensitive tool to obtain elastic properties at seismic frequencies. Lead. Edge 2021, 40, 655–661. [Google Scholar] [CrossRef]
- Peksa, A.E.; Wolf, K.-H.A.A.; Zitha, P.L.J. Bentheimer sandstone revisited for experimental purposes. Mar. Pet. Geol. 2015, 67, 701–719. [Google Scholar] [CrossRef]
- Yurikov, A.; Lebedev, M.; Gor, G.Y.; Gurevich, B. Sorption-Induced Deformation and Elastic Weakening of Bentheim Sandstone. J. Geophys. Res. Solid Earth 2018, 123, 8589–8601. [Google Scholar] [CrossRef]
- Tutuncu, A.N.; Podio, A.L.; Sharma, M.M. Nonlinear viscoelastic behavior of sedimentary rocks; Part II, Hysteresis effects and influence of type of fluid on elastic moduli. Geophysics 1998, 63, 195–203. [Google Scholar] [CrossRef]
- Solodov, I.; Döring, D.; Busse, G. New Opportunities for NDT Using Non-Linear Interaction of Elastic Waves with Defects. J. Mech. Eng. 2011, 57, 14. [Google Scholar] [CrossRef]
- Montoya-Noguera, S.; Lopez-Caballero, F. Effect of coupling excess pore pressure and deformation on nonlinear seismic soil response. Acta Geotech. 2016, 11, 191–207. [Google Scholar] [CrossRef]
- Zheng, W.; Luna, R. Nonlinear Site Response and Liquefaction Analysis in the New Madrid Seismic Zone. Geotech. Geol. Eng. 2011, 29, 463–475. [Google Scholar] [CrossRef]
- Taghavinezhad, M.; Janalizadeh Choobbasti, A.; Farrokhzad, F. Effect of liquefaction on nonlinear seismic response in layered soils: A case study of Babol, North of Iran. Eur. J. Environ. Civ. Eng. 2021, 25, 2199–2216. [Google Scholar] [CrossRef]
Stage No. | Frequencies (Hz) | Duration (s) |
---|---|---|
1 | 30 | 40 |
2 | 22 | 40 |
3 | 30 and 22 | 120 |
4 | 22 | 20 |
5 | 30 | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yurikov, A.; Gurevich, B.; Tertyshnikov, K.; Lebedev, M.; Isaenkov, R.; Sidenko, E.; Yavuz, S.; Glubokovskikh, S.; Shulakova, V.; Freifeld, B.; et al. Evidence of Nonlinear Seismic Effects in the Earth from Downhole Distributed Acoustic Sensors. Sensors 2022, 22, 9382. https://doi.org/10.3390/s22239382
Yurikov A, Gurevich B, Tertyshnikov K, Lebedev M, Isaenkov R, Sidenko E, Yavuz S, Glubokovskikh S, Shulakova V, Freifeld B, et al. Evidence of Nonlinear Seismic Effects in the Earth from Downhole Distributed Acoustic Sensors. Sensors. 2022; 22(23):9382. https://doi.org/10.3390/s22239382
Chicago/Turabian StyleYurikov, Alexey, Boris Gurevich, Konstantin Tertyshnikov, Maxim Lebedev, Roman Isaenkov, Evgenii Sidenko, Sinem Yavuz, Stanislav Glubokovskikh, Valeriya Shulakova, Barry Freifeld, and et al. 2022. "Evidence of Nonlinear Seismic Effects in the Earth from Downhole Distributed Acoustic Sensors" Sensors 22, no. 23: 9382. https://doi.org/10.3390/s22239382
APA StyleYurikov, A., Gurevich, B., Tertyshnikov, K., Lebedev, M., Isaenkov, R., Sidenko, E., Yavuz, S., Glubokovskikh, S., Shulakova, V., Freifeld, B., Correa, J., Wood, T. J., Beresnev, I. A., & Pevzner, R. (2022). Evidence of Nonlinear Seismic Effects in the Earth from Downhole Distributed Acoustic Sensors. Sensors, 22(23), 9382. https://doi.org/10.3390/s22239382