Preventing Attacks on Wireless Networks Using SDN Controlled OODA Loops and Cyber Kill Chains
Abstract
:1. Introduction
- be aware of the situation;
- be aware of the impact of an attack;
- be aware of how situations evolve;
- be aware of actor (adversary) behavior;
- be aware of why and how the current situation is caused;
- be aware of the quality (trustworthiness of information);
- assess plausible future states.
- integration of the Multiplexed One-Class Classifier (MOCC), which previously demonstrated a high degree of accuracy, into a P4 application as a device identification algorithm;
- the use of the Software Defined Networking (SDN) programming language P4 [29] to deliver a novel method for detecting and defending a WAP from impersonation attacks;
2. Solution Overview
2.1. OODA Loop
2.2. P4 Support API Functions
2.3. Kill Chain State Machine
2.4. Countermeasures
3. Evaluation
3.1. Deauthentication/Disassociation DOS Attacks
3.2. Credential Attacks
3.3. Evil Twin/Rogue Access Point
3.4. Authentication/Association Flood Attacks
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
OODA loop algorithm as P4 source code. |
state_input = state_read(); // Management frame if (headers.frameCtrl.frameType == 0x0) { if (headers.frameCtrl.subType == 0xB) state_output = state_update(AUTH); if (headers.frameCtrl.subType == 0x0) state_output = state_update(ASSOC); // De-authentication Frame if (headers.frameCtrl.subType == 0xC) { lookup_tbl.apply(); // Deauthentication frame from a known device. if (ID_ok == 1) state_output = state_update(DEAUTH + VALID_ID); // Deauthentication frame from an unknown device. if (ID_ok == 0) { state_output = state_update(DEAUTH); Drop_action(); } } // Disassociation Frame if (headers.frameCtrl.subType == 0xA) { lookup_tbl.apply(); // Disassociation frame from a known device. if (ID_ok == 1) state_output = state_update(DISASSOC + VALID_ID); // Disassociation frame from an unknown device. if (ID_ok == 0) { state_output = state_update(DISASSOC); Drop_action(); } } // Beacon Frame if (headers.frameCtrl.subType == 0x8) { ssid = ssid_check(headers); // Beacon frame with the same SSID but different BSSID, Evil Twin!! if (ssid == 1) state_output = state_update(BEACON); // Beacon frame with different SSID, another WAP in range - ignore. Pass_action(); } } if (headers.frameCtrl.frameType == 0x1) // Control frame. { Pass_action(); // Pass the frame. } if (headers.frameCtrl.frameType == 0x2 && state_input == 0x0) // Data frame. { CPU_action(); state_output = state_update(DATA); } |
References
- Aung, M.A.C.; Thant, K.P. IEEE 802. 11 Attacks and defenses. In Proceedings of the Seventeenth International Conference on Computer Applications (ICCA 2019), Yangon, Myanmar, 27 February–1 March 2019; pp. 186–191. [Google Scholar]
- IEEE Std 802.11w-2009; Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Amendment 4: Protected ManagementFrames. Amendment to IEEE Std 802.11-2007. IEEE Standards Association: Piscataway, NJ, USA, 2009; pp. 1–111.
- Ahmad, M.S.; Tadakamadla, S. Short paper: Security evaluation of IEEE 802.11w specification. In Proceedings of the WiSec’11—Proceedings of the 4th ACM Conference on Wireless Network Security, Hamburg, Germany, 14–17 June 2011; pp. 53–58. [Google Scholar] [CrossRef]
- Vanhoef, M.; Ronen, E. Dragonblood: Analyzing the dragonfly handshake of WPA3 and EAP-pwd. In Proceedings of the IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 18–21 May 2020. [Google Scholar]
- Dalal, N.; Akhtar, N.; Gupta, A.; Karamchandani, N.; Kasbekar, G.S.; Parekh, J. A wireless intrusion detection system for 802.11 WPA3 networks. In Proceedings of the 2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS), Bangalore, India, 4–8 January 2022; pp. 384–392. [Google Scholar] [CrossRef]
- Rahbari, H.; Krunz, M.; Lazos, L. Security vulnerability and countermeasures of frequency offset correction in 802.11a systems. In Proceedings of the IEEE INFOCOM, Toronto, ON, Canada, 27 April–2 May 2014; pp. 1015–1023. [Google Scholar] [CrossRef]
- Gummadi, R.; Wetherall, D.; Greenstein, B.; Seshan, S. Understanding and mitigating the impact of RF interference on 802.11 networks. In Proceedings of the ACM SIGCOMM 2007: Conference on Computer Communications, Kyoto, Japan, 27–31 August 2007; pp. 385–396. [Google Scholar] [CrossRef] [Green Version]
- Jamal, T.; Alam, M.; Umair, M.M. Detection and prevention against RTS attacks in wireless LANs. In Proceedings of the 2017 International Conference on Communication, Computing and Digital Systems, C-CODE 2017, Islamabad, Pakistan, 8–9 March 2017; pp. 152–156. [Google Scholar] [CrossRef]
- Ray, S.; Carruthers, J.B.; Starobinski, D. RTS/CTS-induced congestion in ad hoc wireless LANs. In Proceedings of the IEEE Wireless Communications and Networking Conference, WCNC, New Orleans, LA, USA, 16–20 March 2003; Volume 3, pp. 1516–1521. [Google Scholar] [CrossRef] [Green Version]
- Bellardo, J.; Savage, S. 802.11 Denial-of-service attacks: Real vulnerabilities and practical solutions. In Proceedings of the 12th Conference on USENIX Security Symposium, Washington, DC, USA, 4–8 August 2003; pp. 15–28. [Google Scholar]
- Lee, I.-G.; Go, K.; Lee, J.H. Battery Draining Attack and Defense against Power Saving Wireless LAN Devices. Sensors 2020, 20, 2043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noman, H.A.; Abdullah, S.M.; Kama, N.; Noman, S.A. A Lightweight Scheme to Mitigate Deauthentication and Disassociation DoS Attacks in Wireless 802.11 Networks. Int. J. VideoImage Process. Netw. Secur. IJVIPNS-IJENS 2016, 16, 1–8. [Google Scholar]
- Eian, M.; Mjølsnes, S.F. A formal analysis of IEEE 802.11w deadlock vulnerabilities. In Proceedings of the EEE INFOCOM, Orlando, FL, USA, 25–30 March 2012; pp. 918–926. [Google Scholar] [CrossRef] [Green Version]
- Martínez, A.; Zurutuza, U.; Uribeetxeberria, R.; Fernández, M.; Lizarraga, J.; Serna, A.; Vélez, I. Beacon frame spoofing attack detection in IEEE 802.11 networks. In Proceedings of the ARES 2008—3rd International Conference on Availability, Security, and Reliability, Proceedings, Security, and Reliability, Proceedings, Barcelona, Spain, 4–7 March 2008; pp. 520–525. [Google Scholar] [CrossRef]
- Tan, Y.; Hong, K.; Sengupta, S.; Subbalakshmi, K.P. Spectrum stealing via sybil attacks in DSA networks: Implementation and defense. In Proceedings of the IEEE International Conference on Communications, Kyoto, Japan, 5–9 June 2011; pp. 2–6. [Google Scholar] [CrossRef]
- Kolias, C.; Kambourakis, G.; Stavrou, A.; Gritzalis, S. Intrusion detection in 802.11 networks: Empirical evaluation of threats and a public dataset. IEEE Commun. Surv. Tutorials 2016, 18, 184–208. [Google Scholar] [CrossRef]
- Jamal, T.; Amaral, P.; Khan, A.; Zameer, A.; Ullah, K.; Butt, S.A. Denial of service attack in wireless LAN. In Proceedings of the The Twelfth International Conference on Digital Society and eGovernments ICDS, Rome, Italy, 25–29 March 2018. [Google Scholar]
- Regan, R.; Manickam, J.M.L. A Survey on Impersonation Attack in Wireless Networks R. Int. J. Secur. Appl. 2017, 11, 39–48. [Google Scholar] [CrossRef]
- Andress, J.; Winterfeld, S. Cyber Warfare: Techniques, Tactics and Tools for Security Practitioners, 1st ed.; Syngress Publishing: Rockland, MA, USA, 2011. [Google Scholar]
- Mihai, I.-C.; Prună, Ș.; Barbu, I.-D. Cyber Kill Chain Analysis. Int. J. Inf. Secur. Cybercrime 2014, 3, 37–42. [Google Scholar] [CrossRef]
- Bahrami, P.N.; Dehghantanha, A.; Dargahi, T.; Parizi, R.M.; Choo, K.K.R.; Javadi, H.H.S. Cyber kill chain-based taxonomy of advanced persistent threat actors: Analogy of tactics, techniques, and procedures. J. Inf. Process. Syst. 2019, 15, 865–889. [Google Scholar] [CrossRef]
- Wilkens, F.; Ortmann, F.; Haas, S.; Vallentin, M.; Fischer, M. Multi-stage attack detection via kill chain state machines. In Proceedings of the CYSARM 2021—Proceedings of the 3rd Workshop on Cyber-Security Arms Race, Co-Located with CCS, Virtual, 19 November 2021; Volume 1, pp. 13–24. [Google Scholar] [CrossRef]
- Barford, P.; Dacier, M.; Dietterich, T.G.; Fredrikson, M.; Giffin, J.; Jajodia, S.; Jha, S.; Li, J.; Liu, P.; Ning, P.; et al. Cyber situational awareness: Issues and research. In Cyber Situational Awareness: Issues and Research; Springer: New York, NY, USA, 2010; pp. 3–13. [Google Scholar] [CrossRef]
- Andrade, R.O.; Yoo, S.G. Cognitive security: A comprehensive study of cognitive science in cybersecurity. J. Inf. Secur. Appl. 2019, 48, 102352. [Google Scholar] [CrossRef]
- Boyd, J. Destruction and Creation; U.S. Army Command and General Staff College: Fort Leavenworth, KS, USA, 1976; pp. 1–9. [Google Scholar]
- Mepham, K.; Louvieris, P.; Ghinea, G.; Clewley, N. Dynamic cyber-incident response. In Proceedings of the 6th International Conference on Cyber Conflict, Tallinn, Estonia, 3–6 June 2014; pp. 121–136. [Google Scholar] [CrossRef] [Green Version]
- Dykstra, J.A.B.S.; Orr, S.R. Acting in the unknown: The cynefin framework for managing cybersecurity risk in dynamic decision making. In Proceedings of the 2016 International Conference on Cyber Conflict (CyCon US), Washington, DC, USA, 21–23 October 2016. [Google Scholar] [CrossRef]
- Patel, H.; Temple, M.A.; Ramsey, B.W. Comparison of high-end and low-end receivers for RF-DNA fingerprinting. In Proceedings of the IEEE Military Communications Conference MILCOM, Baltimore, MD, USA, 6–8 October 2014; pp. 24–29. [Google Scholar] [CrossRef]
- Bosshart, P.; Daly, D.; Gibb, G.; Izzard, M.; McKeown, N.; Rexford, J.; Schlesinger, C.; Talayco, D.; Vahdat, A.; Varghese, G.; et al. P4: Programming protocol-independent packet processors. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 87–95. [Google Scholar] [CrossRef]
- D’Otreppe de Bouvette, T. Aircrack-ng. 2020. Available online: http://www.aircrack-ng.org (accessed on 9 February 2021).
- Deltaflux. Fluxion. 2022. Available online: https://github.com/FluxionNetwork/fluxion (accessed on 23 August 2022).
- Zanna, P. WP4 Modified Openwifi. Github. 2022. Available online: https://github.com/pzanna/openwifi (accessed on 2 November 2022).
- Jiao, X.; Liu, W.; Mehari, M.; Aslam, M.; Moerman, I. Openwifi: A free and open-source IEEE802. 11 SDR implementation on SoC. In Proceedings of the IEEE VTC2020, the 91st Vehicular Technology Conference, Antwerp, Belgium, 25–28 May 2020; pp. 1–2. [Google Scholar]
- Analog Devices. Analog Devices ADRV9361-Z7035. Available online: https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/ADRV9361-Z7035.html (accessed on 14 July 2021).
- Schepers, D.; Ranganathan, A.; Vanhoef, M. On the robustness of Wi-Fi deauthentication countermeasures. In Proceedings of the 15th ACM Conference on Security and Privacy in Wireless and Mobile Networks, San Antonio, TX, USA, 16–19 May 2022; Association for Computing Machinery: New York, NY, USA,, 2022; Volume 1. [Google Scholar] [CrossRef]
- Xu, Q.; Zheng, R.; Saad, W.; Han, Z. Device fingerprinting in wireless networks: Challenges and opportunities. IEEE Commun. Surv. Tutor. 2016, 18, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Y.; Tan, K.; Chen, G.; Kotz, D.; Campbell, A. Detecting 802.11 MAC layer spoofing using received signal strength. In Proceedings of the IEEE INFOCOM, Phoenix, AZ, USA, 13–18 April 2008; pp. 2441–2449. [Google Scholar] [CrossRef] [Green Version]
- Baharudin, N.; Ali, F.H.M.; Darus, M.Y.; Awang, N. Wireless intruder detection system (WIDS) in detecting de-authentication and disassociation attacks in IEEE 802.11. In Proceedings of the 2015 5th International Conference on IT Convergence and Security, ICITCS 2015—Proceedings, Kuala Lumpur, Malaysia, 24–27 August 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Cwalinski, R.; Koenig, H. SDN-based attack detection in wireless local area networks. In Proceedings of the 2018 4th IEEE Conference on Network Softwarization and Workshops, NetSoft 2018, Montreal, QC, Canada, 25–29 June 2018; pp. 187–191. [Google Scholar] [CrossRef]
- Cwalinski, R.; Koenig, H. RADIator—An approach for controllable wireless networks. In Proceedings of the IEEE NETSOFT 2016—2016 IEEE NetSoft Conference and Workshops: Software-Defined Infrastructure for Networks, Clouds, IoT and Services, Seoul, Republic of Korea, 6–10 June 2016; pp. 260–268. [Google Scholar] [CrossRef]
- Tugnait, J.K.; Kim, H. A channel-based hypothesis testing approach to enhance user authentication in wireless networks. In Proceedings of the 2010 2nd International Conference on COMmunication Systems and NETworks, COMSNETS 2010, Bangalore, India, 5–9 January 2010; pp. 1–9. [Google Scholar] [CrossRef]
- Tugnait, J.K. Wireless user authentication via comparison of power spectral densities. IEEE J. Sel. Areas Commun. 2013, 31, 1791–1802. [Google Scholar] [CrossRef]
- Nagarajan, V.; Arasan, V.; Huang, D. Using power hopping to counter MAC spoof attacks in WLAN. In Proceedings of the 2010 7th IEEE Consumer Communications and Networking Conference, CCNC 2010, Las Vegas, NV, USA, 9–12 January 2010; pp. 1–5. [Google Scholar] [CrossRef]
- Manjunath, N.; PalChaudhuri, S.; Avalur, D. Detecting Deauthentication and Disassociation Attack in Wireless Local Area Networks. U.S. Patent US20170244732A12019, 26 March 2019. [Google Scholar]
- Sundaram, R.M.; McCorkendale, B.; Harmon, J.; Chillappa, S. Systems and Methods for Managing Wireless—Network Deauthentication Attacks. U.S. Patent US10462672B1, 29 October 2019. [Google Scholar]
- Tamhane, S.A.; Gaywala, N.D.; Chu, S.R.L.; Zhang, H.; Lou, H.-L. Validating De-authentication Requests. U.S. Patent US10771498B1, 8 September 2020. [Google Scholar]
- Ibrahim, M.; Liu, H.; Jawarhar, M.; Nguyen, V.; Gruteser, M.; Howard, R.; Yu, B.; Bai, F. Verification: Accuracy evaluation of wifi fine time measurements on an open platform. In Proceedings of the 24th Annual International Conference on Mobile Computing and Networking, New Delhi, India, 29 October–2 November 2018; pp. 417–427. [Google Scholar] [CrossRef]
- Shao, W.; Luo, H.; Zhao, F.; Tian, H.; Yan, S.; Crivello, A. Accurate Indoor Positioning Using Temporal-Spatial Constraints Based on Wi-Fi Fine Time Measurements. IEEE Internet Things J. 2020, 7, 11006–11019. [Google Scholar] [CrossRef]
- Kulkarni, A.; Lim, A. Preliminary study on indoor localization using smartphone-based IEEE 802.11mc. In Proceedings of the CoNEXT 2019 Companion—Proceedings of the 15th International Conference on Emerging Networking EXperiments and Technologies, Part of CoNEXT 2019, Orlando, FL, USA, 9–12 December 2019; pp. 43–44. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, L.; Gong, L.; Zhao, Z.; Yang, L.; Liu, Z.; Cheng, X. Accurate Sybil Attack Detection Based on Fine-Grained Physical Channel Information. Sensors 2018, 18, 878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Liu, A.X.; Shahzad, M.; Ling, K.; Lu, S. Device-Free Human Activity Recognition Using Commercial WiFi Devices. IEEE J. Sel. Areas Commun. 2017, 35, 1118–1131. [Google Scholar] [CrossRef]
- Doshi, R.; Apthorpe, N.; Feamster, N. Machine learning DDoS detection for consumer internet of things devices. In Proceedings of the 2018 IEEE Symposium on Security and Privacy Workshops, San Francisco, CA, USA, 24 May 2018; pp. 29–35. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Hong, Z.; Yu, L. Machine Learning-based Intrusion Detection for IoT Devices in smart home. In Proceedings of the IEEE International Conference on Control and Automation, ICCA, Singapore, 9–11 October 2020; pp. 277–282. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Alipour, H.; Al-Nashif, Y.B.; Satam, P.; Hariri, S. Wireless Anomaly Detection Based on IEEE 802.11 Behavior Analysis. IEEE Trans. Inf. Forensics Secur. 2015, 10, 2158–2170. [Google Scholar] [CrossRef]
- Amoordon, A.; Deniau, V.; Gransart, C.; Fleury, A.; Villain, J. A Threshold-based detection approach to detect fake access points and jamming attacks on IEEE 802.11 networks: Implementation, results and limitations. In Proceedings of the 2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting, AT-AP-RASC 2022, Gran Canaria, Spain, 30 May–4 June 2022; Volume 13, pp. 2–5. [Google Scholar] [CrossRef]
- Amoordon, A.; Deniau, V.; Fleury, A.; Gransart, C. A single supervised learning model to detect fake access points, frequency sweeping jamming and deauthentication attacks in IEEE 802.11 networks. Mach. Learn. Appl. 2022, 10, 100389. [Google Scholar] [CrossRef]
- Arora, A. Preventing Wireless Deauthentication Attacks over 802.11 Networks. arXiv 2018, arXiv:1901.07301. [Google Scholar]
- Nguyen, T.D.; Nguyen, D.H.M.; Tran, B.N.; Vu, H.; Mittal, N. A lightweight solution for defending against deauthentication/disassociation attacks on 802.11 networks. In Proceedings of the International Conference on Computer Communications and Networks, ICCCN, ICCCN, St. Thomas, VI, USA, 3–7 August 2008; pp. 185–190. [Google Scholar] [CrossRef]
- Malekzadeh, M.; Ghani, A.A.A.; Zulkarnain, Z.A.; Muda, Z. Security Improvement for Management Frames in IEEE 802. 11 Wireless Networks. Int. J. Comput. Sci. Netw. Secur. 2007, 7, 276–284. [Google Scholar]
Wireless Attack | Type | Vector | Layer | Target |
---|---|---|---|---|
Frequency Offset [6] | DOS | Impersonation | PHY | WAP |
Preamble SYNC [7] | DOS | Impersonation | PHY | WAP |
RTS/CTS [8,9] | DOS | Flow Control | MAC | Ad-hoc |
Power Saving Mode [10,11,12] | DOS | Power Management | MAC | WAP/Client |
IEEE 802.11w Deadlock [13] | DOS | Authentication | MAC | WAP |
Deauthentication [10] | Impersonation/DOS | Authentication | MAC | WAP/Client |
Disassociation [10] | Impersonation/DOS | Association | MAC | WAP/Client |
Beacon Flood [14] | DOS | Impersonation | MAC | Client |
Authentication/Association Flood [12] | DOS | Impersonation | MAC | WAP |
Sybil [15] | DOS | Impersonation | MAC | WAP/Client |
Evil Twin/Rogue Access Point [16] | Impersonation | MITM | MAC | Client |
Cafe Latte [1] | Credential | ARP | MAC | Client |
Dragon Blood [4] | Credential | Side Channel | MAC | WAP/Client |
Inputs | Qa | Qb | Qc | Qd |
---|---|---|---|---|
Data Frame | 0 | 0 | 0 | x |
Authentication | 0 | 0 | 1 | x |
Deauthentication (False) | 0 | 1 | 0 | 1 |
Deauthentication (True) | 0 | 1 | 0 | 0 |
Evil Twin Beacon | 0 | 1 | 1 | x |
Association | 1 | 0 | 0 | x |
Disassociation (False) | 1 | 0 | 1 | 1 |
Disassociation (True) | 1 | 0 | 1 | 0 |
Outputs | Ka | Kb | Kc |
---|---|---|---|
No Attack | 0 | 0 | 0 |
Deauthentication Attack | 0 | 0 | 1 |
Disassociation Attack | 0 | 1 | 0 |
Evil Twin | 0 | 1 | 1 |
Credential Attack | 1 | 0 | 0 |
Authentication Flood | 1 | 0 | 1 |
Association Flood | 1 | 1 | 0 |
Attacker | TP-Link WDN3200 | Generic Realtek 8812BU | |
---|---|---|---|
Client | |||
iPhone 12 (2021) | 100% | 84.4% | |
MacBook Pro (2013) | 100% | 100% | |
HP TPN-C126 Laptop (2017) | 100% | 98.4% | |
MacBook Air (2020) | 100% | 7.8% | |
Samsung Galaxy 10e (2019) | 87.5% | 95.3% | |
Average | 97.5% | 77.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanna, P.; Radcliffe, P.; Kumar, D. Preventing Attacks on Wireless Networks Using SDN Controlled OODA Loops and Cyber Kill Chains. Sensors 2022, 22, 9481. https://doi.org/10.3390/s22239481
Zanna P, Radcliffe P, Kumar D. Preventing Attacks on Wireless Networks Using SDN Controlled OODA Loops and Cyber Kill Chains. Sensors. 2022; 22(23):9481. https://doi.org/10.3390/s22239481
Chicago/Turabian StyleZanna, Paul, Peter Radcliffe, and Dinesh Kumar. 2022. "Preventing Attacks on Wireless Networks Using SDN Controlled OODA Loops and Cyber Kill Chains" Sensors 22, no. 23: 9481. https://doi.org/10.3390/s22239481
APA StyleZanna, P., Radcliffe, P., & Kumar, D. (2022). Preventing Attacks on Wireless Networks Using SDN Controlled OODA Loops and Cyber Kill Chains. Sensors, 22(23), 9481. https://doi.org/10.3390/s22239481