Computer State Evaluation Using Adaptive Neuro-Fuzzy Inference Systems
Abstract
:1. Introduction
Related Works
2. Proposed Idea
2.1. ANFIS
2.2. Mamdani and Sugeno Type ANFIS
Algorithm 1: Steps of ANFIS algorithm |
1: Defining of linguistic variables for each hardware component 2: Constructing membership functions for each linguistic variable 3: Developing knowledge base (rule base for Mamdani ANFIS and training dataset for Sugeno ANFIS) 4: Fuzzifying the crisp inputs 5: Training process and evaluating knowledge base (database, dataset, and rule base) 6: Combining the output results of each rule 7: Defuzzifying nonfuzzy outputs |
- Formulating a list of fuzzy rules.
- Using membership functions to fuzzify the input values that are crisp.
- Combining inputs that have been fuzzified in accordance with fuzzy rules to determine the rule strength.
- By combining rule strength and output, determining the rule’s effect.
- Combining the outcomes of obtaining an output distribution.
- Defuzzification of the results.
3. Data Acquisition and Performance Evaluation
3.1. Data Acquisition Application
3.2. Developing the ANFIS for Evaluation of CPU Utilization
- Fuzzification of input RAM, cache, storage, and bus values—fuzzy layer.
- Determination inference method and rules (data)—product and normalized layers.
- Defuzzification of CPU utilization values as output—defuzzy and output layers.
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Enberg, P.; Rao, A.; Tarkoma, S. I/O is faster than the processor—Let’s share resources and eliminate (most) OS abstractions. In Proceedings of the Materials of the Workshop on Current Topics in Operating Systems (HotOS’19), Bertinoro, Italy, 13–15 May 2019; pp. 81–87. [Google Scholar]
- Ahituv, N.; Ibgaria, M. A Model for Predicting and Evaluating Computer Resource Consumption. Commun. ACM 1988, 31, 1467–1473. [Google Scholar] [CrossRef]
- Perez, F.A.F. Mathematical modeling of the performance of a computer system. In Proceedings of the 1st Symposium on Information Management and Big Data, SIMBig, Cusco, Peru, 8–10 September 2014. [Google Scholar]
- Rajaram, K.; Malarvizhi, M.P. Utilization based prediction model for resource provisioning. In Proceedings of the International Conference on Computer, Communication and Signal Processing (ICCCSP), Chennai, India, 10–11 January 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Mentis, A.; Katsaros, P.; Angelis, L. Synthetic Metrics for Evaluating Runtime Quality of Software Architectures with Complex Tradeoffs. In Proceedings of the 35th Euromicro Conference on Software Engineering and Advanced Applications, Patras, Greece, 27–29 August 2009. [Google Scholar]
- Basaran, C.; Suzer, M.H.; Kang, K.D.; Liu, X. Robust Fuzzy CPU Utilization Control for Dynamic Workloads. J. Syst. Softw. 2010, 83, 1192–1204. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zhu, Y.; Di, Y.; Feng, S. Self-Adaptive Prediction of Cloud Resource Demands Using Ensemble Model and Subtractive-Fuzzy Clustering Based Fuzzy Neural Network. Comput. Intell.Neurosci. 2015, 2015, 919805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buriboev, A.; Kang, H.K.; Ko, M.C.; Oh, R.; Abduvaitov, A.; Jeon, H.S. Application of Fuzzy Logic for Problems of Evaluating States of a Computing System. Appl. Sci. 2019, 9, 3021. [Google Scholar] [CrossRef] [Green Version]
- Abraham, A. Adaptation of Fuzzy Inference System Using Neural Learning. In Fuzzy Systems Engineering. Studies in Fuzziness and Soft Computing; Nedjah, N., Macedo Mourelle, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 181. [Google Scholar]
- Tiwari, S.H.; Babbar, R.; Kaur, G. Performance Evaluation of Two ANFIS Models for Predicting Water Quality Index of River Satlu (India). Adv. Civ. Eng. 2018, 2018, 8971079. [Google Scholar]
- Kordestani, M.; Saif, M.; Orchard, M.E.; Razavi-Far, R.; Khorasani, K. Failure Prognosis and Applications—A Survey of Recent Literature. IEEE Trans. Reliab. 2019, 70, 728–748. [Google Scholar] [CrossRef]
- Dumitrescu, C.; Ciotirnae, P.; Vizitiu, C. Fuzzy Logic for Intelligent Control System Using Soft Computing Applications. Sensors 2021, 21, 2617. [Google Scholar] [CrossRef]
- Karnavel, K.; Shanmugasundaram, G.; Salunkhe, S.S.; Sundari, V.K.; Shunmugathammal, M.; Saraswat, B.K. Actuator Fluid Control Using Fuzzy Feedback for Soft Robotics Activities. Intell. Autom. Soft Comput. 2022, 32, 1855–1865. [Google Scholar] [CrossRef]
- Karthika, B.; Deka, P.C. Prediction of air temperature by hybridized model (wavelet-ANFIS) using wavelet decomposed data. Aquat. Procedia 2015, 4, 1155–1161. [Google Scholar] [CrossRef]
- Munandar, D. Wavelet discrete transform, ANFIS and linear regression for short-term time series prediction of air temperature. Int. J. Adv. Intell. Inform. 2017, 3, 68–80. [Google Scholar] [CrossRef]
- Hossain, S.J.; Ahmad, N. Adaptive neuro-fuzzy inference system (ANFIS) based surface roughness prediction model for ball-end milling operation. J. Mech. Eng. Res. 2012, 4, 112–129. [Google Scholar]
- Helmi, H.; Forouzantabar, A. Rolling bearing fault detection of electric motor using time domain and frequency domain features extraction and ANFIS. IET Electr. Power Appl. 2019, 13, 662–669. [Google Scholar] [CrossRef]
- Awadallah, M.A.; Morcos, M.M. ANFIS-based diagnosis and location of stator interturn faults in PM brushless DC motors. IEEE Trans. Energy Convers. 2004, 19, 795–796. [Google Scholar] [CrossRef]
- Abdelwahab, S.; Kumar, V.; Abraham, A. Neuro-Fuzzy risk prediction model for computational grids. In Proceedings of the 2nd International Afro-European Conference for Industrial Advancement—AECIA 2015, Paris-Villejuif, France, 9–11 September 2015. [Google Scholar]
- Amekraz, Z.; Hadi, M.Y. CANFIS: A Chaos Adaptive Neural Fuzzy Inference System for Workload Prediction in the Cloud. IEEE Access 2022, 10, 49808–49828. [Google Scholar] [CrossRef]
- Bey, K.B.; Benhammadi, F.; Mokhtari, A.; Guessoum, Z. CPU load prediction model for distributed computing. In Eighth International Symposium on Parallel and Distributed Computing; IEEE: New York, NY, USA, 2009; pp. 39–45. [Google Scholar]
- Butt, M.; Akram, M. A novel fuzzy decision-making system for CPU scheduling algorithm. Neural Comput. Appl. 2016, 27, 1927–1939. [Google Scholar] [CrossRef]
- Gellert, A.; Florea, A.; Fiore, U.; Zanetti, P.; Vintan, L. Performance and energy optimization in CPUs through fuzzy knowledge representation. Inf. Sci. 2019, 476, 375–391. [Google Scholar] [CrossRef]
- Beghdad, K.; Benhammadi, F.; Gessoum, Z.; Mokhtari, A. CPU Load Prediction Using Neuro-Fuzzy and Bayesian Inferences. Neurocomputing 2011, 74, 1606–1616. [Google Scholar] [CrossRef]
- Hussain, W.; Merigó, J.M.; Raza, M.R.; Gao, H. A new QoS prediction model using hybrid IOWA-ANFIS with fuzzy C-means, subtractive clustering and grid partitioning. Inf. Sci. 2022, 584, 280–300. [Google Scholar] [CrossRef]
- Malik, S.; Tahir, M.; Sardaraz, M.; Alourani, A. A Resource Utilization Prediction Model for Cloud Data Centers Using Evolutionary Algorithms and Machine Learning Techniques. Appl. Sci. 2022, 12, 2160. [Google Scholar] [CrossRef]
- Hamid, A.; Claus, P.; Giovani, E.; Areeg, S.; Frank, F. A fuzzy load balancer for Adaptive Fault Tolerance Management in Cloud platforms. In Proceedings of the Service-Oriented and Cloud Computing: 6th IFIP WG 2.14 European Conference, ESOCC 2017, Oslo, Norway, 27–29 September 2017. [Google Scholar]
- Li, G.; Gao, T.; Zhang, A.; Chen, Y. Fuzzy logic load balancing strategy based on software-defined networking. In Proceedings of the Wireless Internet: 10th International Conference, WiCON 2017, Tianjin, China, 16–17 December 2017. [Google Scholar]
- Valarmathi, K.; Kanaga Suba Raja, S. Resource utilization prediction technique in cloud using knowledge-based ensemble random forest with LSTM model. Concurr. Eng. 2021, 29, 396–404. [Google Scholar] [CrossRef]
- Mason, K.; Duggan, M.; Barrett, E.; Duggan, J.; Howley, E. Predicting host CPU utilization in the cloud using evolutionary neural networks. future generator. Comput. Syst. 2018, 86, 162–173. [Google Scholar] [CrossRef]
- Duggan, M.; Mason, K.; Duggan, J.; Howley, E.; Barrett, E. Predicting host CPU utilization in cloud computing using recurrent neural networks. In Proceedings of the 8th International Workshop on Cloud Applications and Security, Cambridge, UK, 11–14 December 2017. [Google Scholar]
- Kumar, J.; Goomer, R.; Singh, A.K. Long Short-Term Memory Recurrent Neural Network (lstm-rnn) based Workload Forecasting Model for Cloud Datacenters. Procedia Comput. Sci. 2018, 125, 676–682. [Google Scholar] [CrossRef]
- Dartois, J.; Knefati, A.; Boukhobza, J.; Barais, O. Using Quantile Regression for Reclaiming Unused Cloud Resources while Achieving SLA. In Proceedings of the 2018 10th IEEE International Conference on Cloud Computing Technology and Science, Nicosia, Cyprus, 10–13 December 2018. [Google Scholar]
- Makridis, E.; Deliparaschos, K.; Kalyvianaki, E.; Zolotas, A.; Charalambous, T. Robust Dynamic CPU Resource Provisioning in Virtualized Servers. IEEE Trans. Serv. Comput. 2022, 15, 956–969. [Google Scholar] [CrossRef]
- Ross, T.J. Fuzzy Logic with Engineering Applications; John Wiley Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
№ | Utilization (%) | ||||
---|---|---|---|---|---|
RAM | Cache | Storage | Bus | CPU | |
1 | 51 | 32 | 5 | 72 | 14 |
2 | 38 | 97 | 25 | 100 | 35 |
… | … | … | … | … | … |
3000 | 48 | 80 | 20 | 95 | 65 |
Hardware and Software | Parameter |
---|---|
Operating system | Windows 10 Professional (Microsoft Corparation), 64 bit |
Processor | Intel(R) Core(TM) i7-8700 CPU @3.20 GHz 3.19 GHz |
Memory (RAM) | 16.0 GB |
Cache | L1 384 KB, L2 1.5 MB, L3 12.0 MB |
Storage | 1050 GB |
Linguistic Variables | Distribution |
---|---|
Low | (0, 20, 40) |
Middle | (30, 50, 70) |
High | (60, 80, 100) |
Performance Monitor Evaluation (Percentage Utilization of Components) | CPU Evaluation of Mamdani FIS | CPU Evaluation of Sugeno FIS | ||||||
---|---|---|---|---|---|---|---|---|
Cache | RAM | Storage | Bus | CPU | Crisp Value (%) | Linguistic Value | Crisp Value (%) | Linguistic Value |
30 | 50 | 5 | 75 | 14 | 16.5 | Low | 11.8 | Low |
90 | 97 | 15 | 90 | 21 | 25.3 | Middle | 18.9 | Low |
78 | 80 | 30 | 100 | 31 | 33.1 | Middle | 29.9 | Middle |
96 | 90 | 15 | 100 | 33 | 34.3 | Middle | 34.9 | Middle |
82 | 97 | 23 | 92 | 50 | 49.0 | Middle | 49.6 | Middle |
100 | 100 | 25 | 100 | 52 | 50.6 | Middle | 52.6 | Middle |
20 | 70 | 3 | 92 | 26 | 28.2 | Middle | 24.0 | Low |
21 | 86 | 33 | 95 | 28 | 29.7 | Middle | 26.1 | Middle |
95 | 90 | 54 | 93 | 33 | 31.2 | Middle | 32.6 | Middle |
40 | 70 | 5 | 87 | 12 | 15.2 | Low | 17.6 | Low |
100 | 100 | 100 | 100 | 84 | 80.9 | High | 80.5 | High |
52 | 90 | 26 | 98 | 17 | 16.2 | Low | 19.4 | Low |
100 | 41 | 30 | 100 | 100 | 96.3 | High | 96.9 | High |
97 | 100 | 94 | 96 | 78 | 73.2 | High | 76.6 | High |
100 | 95 | 5 | 99 | 71 | 73.6 | Middle | 71.3 | Middle |
94 | 100 | 95 | 96 | 45 | 46.4 | Middle | 44.3 | Middle |
95 | 96 | 58 | 97 | 20 | 23.8 | Low | 18.3 | Low |
93 | 91 | 45 | 93 | 18 | 20.6 | Low | 16.6 | Low |
12 | 15 | 6 | 56 | 15 | 11.4 | Low | 14.1 | Low |
60 | 20 | 9 | 63 | 23 | 21.6 | Low | 21.3 | Low |
31 | 23 | 13 | 78 | 39 | 36.6 | Middle | 38.7 | Middle |
93 | 62 | 3 | 97 | 60 | 59.1 | Middle | 60.2 | Middle |
2 | 15 | 6 | 23 | 7 | 4.6 | Low | 5.1 | Low |
7 | 40 | 59 | 43 | 12 | 15.0 | Low | 10.9 | Low |
26 | 92 | 90 | 98 | 22 | 23.6 | low | 26.4 | Low |
Performance Monitor | Mamdani ANFIS | Sugeno ANFIS | |||
---|---|---|---|---|---|
Linguistic Value | Actual CPU State | Error | Average Error | Error | Average Error |
Low | 7 | −2.4 | 1.25 | −1.9 | −0.05 |
12 | 3.2 | 5.6 | |||
12 | 3 | −1.1 | |||
14 | 2.5 | −2.2 | |||
15 | −3.6 | −0.9 | |||
17 | −0.8 | 2.4 | |||
18 | 2.6 | −1.4 | |||
20 | 3.8 | −1.7 | |||
21 | 4.3 | −2.1 | |||
22 | 1.6 | 4.4 | |||
23 | −1.4 | −1.7 | |||
Middle | 26 | 2.2 | 0.16 | −2 | −0.18 |
28 | 1.7 | −1.9 | |||
31 | 2.1 | −1.1 | |||
33 | 1.3 | 1.9 | |||
33 | −1.8 | −0.4 | |||
39 | −2.4 | −0.3 | |||
45 | 1.4 | −0.7 | |||
50 | −1 | −0.4 | |||
52 | −1.4 | 0.6 | |||
60 | −0.9 | 0.2 | |||
71 | 2.6 | 0.3 | |||
High | 78 | −4.8 | −3.86 | −1.4 | −2.26 |
84 | −3.1 | −3.5 | |||
100 | −3.7 | −3.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buriboev, A.; Muminov, A. Computer State Evaluation Using Adaptive Neuro-Fuzzy Inference Systems. Sensors 2022, 22, 9502. https://doi.org/10.3390/s22239502
Buriboev A, Muminov A. Computer State Evaluation Using Adaptive Neuro-Fuzzy Inference Systems. Sensors. 2022; 22(23):9502. https://doi.org/10.3390/s22239502
Chicago/Turabian StyleBuriboev, Abror, and Azamjon Muminov. 2022. "Computer State Evaluation Using Adaptive Neuro-Fuzzy Inference Systems" Sensors 22, no. 23: 9502. https://doi.org/10.3390/s22239502
APA StyleBuriboev, A., & Muminov, A. (2022). Computer State Evaluation Using Adaptive Neuro-Fuzzy Inference Systems. Sensors, 22(23), 9502. https://doi.org/10.3390/s22239502