An Immunosensor for the Determination of Cortisol in Serum and Saliva by Array SPRi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Biological Material
2.3. Procedures
2.3.1. Antibody Immobilization
2.3.2. SPRi Measurements
2.3.3. QCM Measurements
3. Results and Discussion
3.1. Optimization of Conditions for Measurements
3.2. Influence of Solution pH on Interaction Process
3.3. Analytical Characteristics of the Immunosensor
3.4. Selectivity of the Immunosensor
3.5. Testing Successive Layers of the Immunosensor
3.6. Application of the Immunosensor for Determination of Cortisol in Biological Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Materials
Appendix B
Apparatus and Chip Architecture
Appendix C
Optimization of Concentration of Mouse Monoclonal Antibody (Receptor)
References
- Gagnon, N.; Fréchette, I.; Mallet, P.-L.; Dubé, J.; Houde, G.; Fink, G.D. Establishment of reference intervals for the salivary cortisol circadian cycle, by electrochemiluminescence (ECLIA), in healthy adults. Clin. Biochem. 2018, 54, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Angeli, A.; Frajria, R.; Dogliotti, L.; Crosazzo, C.; Rigoli, F.; Ceresa, F. Differences between temporal patterns of plasma cortisol and corticosteroid-binding globulin binding capacity throughout the twenty-four hour day and the menstrual cycle. J. Endocrinol. Investig. 1978, 1, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Stevens, R.C.; Soelberg, S.D.; Near, S.; Furlong, C.E. Detection of Cortisol in Saliva with a Flow-Filtered, Portable Surface Plasmon Resonance Biosensor System. Anal. Chem. 2008, 80, 6747–6751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez, A.-G.; Fraissinet, F.; Lefebvre, H.; Brunel, V.; Ziegler, F. Pharmacological and analytical interference in hormone assays for diagnosis of adrenal incidentaloma. Ann. Endocrinol. 2019, 80, 250–258. [Google Scholar] [CrossRef]
- El-Farhan, N.; Rees, D.A.; Evans, C. Measuring cortisol in serum, urine and saliva—Are our assays good enough? Ann. Clin. Biochem. 2017, 54, 308–322. [Google Scholar] [CrossRef] [Green Version]
- Munoz, M.J.; Kumar, R.G.; Oh, B.-M.; Conley, Y.P.; Wang, Z.; Failla, M.D.; Wagner, A.K. Cerebrospinal Fluid Cortisol Mediates Brain-Derived Neurotrophic Factor Relationships to Mortality after Severe TBI: A Prospective Cohort Study. Front. Mol. Neurosci. 2017, 10, 44. [Google Scholar] [CrossRef] [Green Version]
- Jia, M.; Chew, W.M.; Feinstein, Y.; Skeath, P.; Sternberg, E.M. Quantification of cortisol in human eccrine sweat by liquid chromatography—Tandem mass spectrometry. Analyst 2016, 141, 2053–2060. [Google Scholar] [CrossRef] [Green Version]
- VanBruggen, M.D.; Hackney, A.C.; McMurray, R.G.; Ondrak, K.S. The Relationship Between Serum and Salivary Cortisol Levels in Response to Different Intensities of Exercise. Int. J. Sport. Physiol. Perform. 2011, 6, 396–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatti, R.; Antonelli, G.; Prearo, M.; Spinella, P.; Cappellin, E.; De Palo, E.F. Cortisol assays and diagnostic laboratory procedures in human biological fluids. Clin. Biochem. 2009, 42, 1205–1217. [Google Scholar] [CrossRef]
- Hogenelst, K.; Soeter, M.; Kallen, V. Ambulatory measurement of cortisol: Where do we stand, and which way to follow? Sens. Bio-Sens. Res. 2019, 22, 100249. [Google Scholar] [CrossRef]
- Al Sharef, O.; Feely, J.; Kavanagh, P.V.; Scott, K.R.; Sharma, S.C. An HPLC method for the determination of the free cortisol/cortisone ratio in human urine. Biomed. Chromatogr. 2007, 21, 1201–1206. [Google Scholar] [CrossRef]
- Kosicka, K.; Siemiątkowska, A.; Szpera-Goździewicz, A.; Krzyścin, M.; Bręborowicz, G.; Główka, F. High-performance liquid chromatography methods for the analysis of endogenous cortisol and cortisone in human urine: Comparison of mass spectrometry and fluorescence detection. Ann. Clin. Biochem. 2019, 56, 82–89. [Google Scholar] [CrossRef]
- Zhang, Y.V. Quantitative Analysis of Salivary Cortisol Using LC-MS/MS. Methods Mol. Biol. 2016, 1378, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Panfilova, E. Development of a Prototype Lateral Flow Immunoassay of Cortisol in Saliva for Daily Monitoring of Stress. Biosensors 2021, 11, 146. [Google Scholar] [CrossRef] [PubMed]
- Noel, M.-M.; Fraissinet, F.; Lefebvre, H.; Benichou, J.; Brunel, V.; Ziegler, F. Novel threshold value of midnight serum cortisol for diagnosis of hypercortisolism using the Roche Cortisol II assay. Clin. Biochem. 2022, 101, 50–53. [Google Scholar] [CrossRef]
- Mitchell, J.S.; Lowe, T.E.; Ingram, J.R. Rapid ultrasensitive measurement of salivary cortisol using nano-linker chemistry coupled with surface plasmon resonance detection. Analyst 2009, 134, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.; Lee, W.; Park, J.; Kim, W.; Kim, W.; Lee, G.; Lee, H.-J.; Hong, J.; Park, J. Localized surface plasmon resonance aptasensor for the highly sensitive direct detection of cortisol in human saliva. Sens. Actuators B Chem. 2020, 304, 127424. [Google Scholar] [CrossRef]
- Jeon, J.; Uthaman, S.; Lee, J.; Hwang, H.; Kim, G.; Yoo, P.J.; Hammock, B.D.; Kim, C.S.; Park, Y.-S.; Park, I.-K. In-direct localized surface plasmon resonance (LSPR)-based nanosensors for highly sensitive and rapid detection of cortisol. Sens. Actuators B Chem. 2018, 266, 710–716. [Google Scholar] [CrossRef]
- Leitão, C.; Leal-Junior, A.; Almeida, A.R.; Pereira, S.O.; Costa, F.M.; Pinto, J.L.; Marques, C. Cortisol AuPd plasmonic unclad POF biosensor. Biotechnol. Rep. 2021, 29, e00587. [Google Scholar] [CrossRef]
- Khan, M.S.; Dighe, K.; Wang, Z.; Srivastava, I.; Schwartz-Duval, A.S.; Misra, S.K.; Pan, D. Electrochemical-digital immunosensor with enhanced sensitivity for detecting human salivary glucocorticoid hormone. Analyst 2018, 144, 1448–1457. [Google Scholar] [CrossRef]
- Sekar, M.; Pandiaraj, M.; Bhansali, S.; Ponpandian, N.; Viswanathan, C. Carbon fiber based electrochemical sensor for sweat cortisol measurement. Sci. Rep. 2019, 9, 403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urizar, G.G., Jr.; Hernandez, H.S.; Rayo, J.; Bhansali, S. Validation of an Electrochemical Sensor to Detect Cortisol Responses to the Trier Social Stress Test. Neurobiol. Stress 2020, 13, 100263. [Google Scholar] [CrossRef]
- Liu, J.; Xu, N.; Men, H.; Li, S.; Lu, Y.; Low, S.S.; Li, X.; Zhu, L.; Cheng, C.; Xu, G.; et al. Salivary Cortisol Determination on Smartphone-Based Differential Pulse Voltammetry System. Sensors 2020, 20, 1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moghadam, F.M.; Bigdeli, M.; Tamayol, A.; Shin, S.R. TISS nanobiosensor for salivary cortisol measurement by aptamer Ag nanocluster SAIE supraparticle structure. Sens. Actuators B Chem. 2021, 344, 130160. [Google Scholar] [CrossRef]
- Ito, T.; Aoki, N.; Kaneko, S.; Suzuki, K. Highly sensitive and rapid sequential cortisol detection using twin sensor QCM. Anal. Methods 2014, 6, 7469–7474. [Google Scholar] [CrossRef]
- Frasconi, M.; Mazzarino, M.; Botrè, F.; Mazzei, F. Surface plasmon resonance immunosensor for cortisol and cortisone determination. Anal. Bioanal. Chem. 2009, 394, 2151–2159. [Google Scholar] [CrossRef]
- Tahara, Y.; Ehuang, Z.; Ekiritoshi, T.; Eonodera, T.; Etoko, K. Development of Indirect Competitive Immuno-Assay Method Using SPR Detection for Rapid and Highly Sensitive Measurement of Salivary Cortisol Levels. Front. Bioeng. Biotechnol. 2014, 2, 15. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, L.; Cui, D. Surface plasmon resonance immunoassay for cortisol determination with a self-assembling denaturalised bovine serum albumin layer on surface plasmon resonance chip. Micro Nano Lett. 2016, 11, 20–23. [Google Scholar] [CrossRef]
- Szymanska, B.; Lukaszewski, Z.; Zelazowska-Rutkowska, B.; Hermanowicz-Szamatowicz, K.; Gorodkiewicz, E. An SPRi Biosensor for Determination of the Ovarian Cancer Marker HE4 in Human Plasma. Sensors 2021, 21, 3567. [Google Scholar] [CrossRef]
- Szymanska, B.; Lukaszewski, Z.; Hermanowicz-Szamatowicz, K.; Gorodkiewicz, E. An immunosensor for the determination of carcinoembryonic antigen by Surface Plasmon Resonance imaging. Anal. Biochem. 2020, 609, 113964. [Google Scholar] [CrossRef]
- Gorodkiewicz, E.; Sankiewicz, A.; Laudański, P. Surface plasmon resonance imaging biosensors for aromatase based on a potent inhibitor and a specific antibody: Sensor development and application for biological material. Cent. Eur. J. Chem. 2014, 12, 557–567. [Google Scholar] [CrossRef]
- Sankiewicz, A.; Guszcz, T.; Mena-Hortelano, R.; Zukowski, K.; Gorodkiewicz, E. Podoplanin serum and urine concentration in transitional bladder cancer. Cancer Biomark. 2016, 16, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Guszcz, T.; Szymańska, B.; Kozlowski, R.; Lukaszewski, Z.; Laskowski, P.; Gorodkiewicz, E. Plasma aromatase as a sensitive and selective potential biomarker of bladder cancer and its role in tumorigenesis. Oncol. Lett. 2020, 19, 562–568. [Google Scholar] [CrossRef] [Green Version]
- Matuszczak, E.; Tylicka, M.; Dębek, W.; Sankiewicz, A.; Gorodkiewicz, E.; Hermanowicz, A. Overexpression of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) in serum of children after thermal injury. Adv. Med Sci. 2017, 62, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Oldak, L.; Lukaszewski, Z.; Gorodkiewicz, E. Studies of interactions between fibronectin and a specific antibody against fibroncetin using SPRi and QCM. J. Pharm. Biomed. Anal. 2022, 799, 114640. [Google Scholar] [CrossRef]
- United Nations Office on Drugs and Crime (UNODC). Guidance for the Validation of Analytical Methodology and Calibration of Equipment Used for Testing of Illicit Drugs in Seized Materials and Biological Specimens: A Commitment to Quality and Continuous Improvement; United Nations Publications: New York, NY, USA, 2009. [Google Scholar]
- Hoagwood, K.; Vincent, A.; Acri, M.; Morrissey, M.; Seibel, L.; Guo, F.; Flores, C.; Seag, D.; Pierce, R.P.; Horwitz, S. Reducing Anxiety and Stress among Youth in a CBT-Based Equine-Assisted Adaptive Riding Program. Animals 2022, 12, 2491. [Google Scholar] [CrossRef]
- Cerón, J.J.; Contreras-Aguilar, M.D.; Escribano, D.; Martínez-Miró, S.; López-Martínez, M.J.; Ortín-Bustillo, A.; Franco-Martínez, L.; Rubio, C.P.; Muñoz-Prieto, A.; Tvarijonaviciute, A.; et al. Basics for the potential use of saliva to evaluate stress, inflammation, immune system, and redox homeostasis in pigs. BMC Vet. Res. 2022, 18, 81. [Google Scholar] [CrossRef]
Biosensor | Medium | LOD | References |
---|---|---|---|
Electrochemical-digital immunosensor | Saliva | 0.87 ± 0.12 pg mL−1 | [20] |
Electrochemical graphene-based sensor | Sweat | 0.005 fg mL−1 | [21] |
Screen-printed cortisol sensor using cyclic voltammetry as method detection | Saliva | no data | [22] |
Immunosensor based on the smartphone-controlled Differential Pulse Voltammetry (DPV) system | Saliva | 0.11 nM | [23] |
Aptamer TISS (Target-Induced Structural Switching) nanosensor based on the aptamer | Saliva | 1 nmol L−1 | [24] |
Twin sensor chip on quartz crystal micro balance (QCM) | Not tested | 11 pg mL−1 | [25] |
SPR biosensor | Saliva | 1.0 ng mL−1 | [3] |
Microfluidic SPR biosensor immunoassay | Saliva | 49 pg mL−1 | [16] |
SPR immunosensor | Saliva, urine | 3 µg L−1 4 µg L−1 | [26] |
SPR immunosensor | Saliva | 38 pg L−1 | [27] |
SPR biosensor | Not tested | 1 ng mL−1 | [28] |
Disposable LSPR competitive biosensor | Serum | 40.3 ng mL−1 | [18] |
LSPR aptasensor | Saliva | 0.1 nM; | [17] |
LSPR immunosensor | Not tested | 1 pg mL−1 | [19] |
SPRi Array | Saliva, serum | 150 pg mL−1 | This work |
Series | Spiked [ng mL−1] | Found [ng mL−1] | SD [ng mL−1] | SR [%] | Recovery [%] |
---|---|---|---|---|---|
1 | 0.20 | 0.21 | 0.02 | 7.5 | 107 |
2 | 1.00 | 0.99 | 0.03 | 3.1 | 99 |
3 | 4.00 | 4.07 | 0.14 | 3.3 | 102 |
Medium | Samples Number | Cortisol Concentration [ng mL−1] | |
---|---|---|---|
SPRi | Standard Method | ||
Serum | 1 2 3 4 5 6 7 8 9 | 81.0 ± 6.4 103.8 ± 7.7 108.1 ± 5.1 23.9 ± 2.3 45.9 ± 3.2 14.6 ± 2.3 18.6 ± 1.9 110 ± 0.8 78.6 ± 4.2 | 85.6 101.6 111.6 28.4 48.7 13.9 19.1 105.5 83.4 |
Saliva | 1 2 3 4 5 6 7 8 9 | 2.6 ± 0.19 7.3 ± 0.54 4.6 ± 0.52 2.1 ± 0.20 3.6 ± 0.36 3.9 ± 0.39 7.6 ± 0.12 1.4 ± 0.07 5.2 ± 0.24 | 2.8 6.3 5.3 2.7 3.5 4.5 6.9 1.1 6.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sankiewicz, A.; Oldak, L.; Zelazowska-Rutkowska, B.; Hermanowicz, A.; Lukaszewski, Z.; Gorodkiewicz, E. An Immunosensor for the Determination of Cortisol in Serum and Saliva by Array SPRi. Sensors 2022, 22, 9675. https://doi.org/10.3390/s22249675
Sankiewicz A, Oldak L, Zelazowska-Rutkowska B, Hermanowicz A, Lukaszewski Z, Gorodkiewicz E. An Immunosensor for the Determination of Cortisol in Serum and Saliva by Array SPRi. Sensors. 2022; 22(24):9675. https://doi.org/10.3390/s22249675
Chicago/Turabian StyleSankiewicz, Anna, Lukasz Oldak, Beata Zelazowska-Rutkowska, Adam Hermanowicz, Zenon Lukaszewski, and Ewa Gorodkiewicz. 2022. "An Immunosensor for the Determination of Cortisol in Serum and Saliva by Array SPRi" Sensors 22, no. 24: 9675. https://doi.org/10.3390/s22249675
APA StyleSankiewicz, A., Oldak, L., Zelazowska-Rutkowska, B., Hermanowicz, A., Lukaszewski, Z., & Gorodkiewicz, E. (2022). An Immunosensor for the Determination of Cortisol in Serum and Saliva by Array SPRi. Sensors, 22(24), 9675. https://doi.org/10.3390/s22249675