Deep Learning in Medical Hyperspectral Images: A Review
Abstract
:1. Introduction
2. Hyperspectral Imaging Technology
2.1. Imaging Principles and Techniques
2.2. Imaging System
2.2.1. Acquisition Mode
- Push broom
- 2.
- Staring
- 3.
- Snapshot
Reference | Spectral Range (nm) | Spectral Resolution/nm | Detector | Spectral Spectroscopy | Acquisition Mode | Applications |
---|---|---|---|---|---|---|
[31] | 450~900 | CRI Maestro imaging system | LCTF | Tumor margin classification | ||
[32] | 430~680 | Monochromatic CCD-camera | In vivo tumors | |||
[33] | 450~900 | 5 | CRI Maestro imaging system | LCTF | Head and neck cancer | |
[34] | 500~995 | 5 | TIVITA Tissue Camera | Push broom | Ex vivo kidneys classification | |
[35] | 350~1000 | >1 | Micro-hyperspectral imaging system | PGP | Stomach Cancer Classification | |
[17] | Silicon charge-coupled devices | LCTFs | Blood cell classification | |||
[36] | 400~720 | CCD | LCTF | Blood cell classification | ||
[37] | 500~1000 | 5 | TIVITA Tissue Camera | Push broom | Tissue classification | |
[38] | 400~1000 | 2~3 | VNIR camera, HELICoiD demonstrator, Si CCD | LCTFs | Push broom | Brain cancer detection |
[39] | 430~920 | Hyperspectral line-scan camera (IMEC) | Push broom | Colon cancer classification | ||
[40] | 477~891 | SICSURFIS Spectral Imager | FPI | Hand-held | Skin Tumors | |
[41] | 450~950 | 8 | Snapshot HS camera | Snapshot | Skin Cancer | |
[42] | 400~1000 | 2.8 | CCD | Push broom | Breast cancer cell detection | |
[43] | 450~950 | CRI Maestro imaging system | LCTF | Head and neck cancer | ||
[44] | 500~1000 | 5 | TIVITA Tissue Camera | Push broom | Esophageal cancer classification | |
[45] | Spatial-scanning hyperspectral endoscope (HySE) | Push broom | Esophageal cancer | |||
[46] | 450~950 | CCD | FPI | Snapshot | Skin feature detection | |
[47] | 400~1000 | 2.8 | Microscopic HS camera, CCD | PGP | Staring | Brain cancer classification |
[48,49] | 450~900 | 5 | CRI Maestro imaging system | LCTF | Head and neck cancer | |
[50] | 500~1000 | 5 | TIVITA Tissue Camera | Push broom | Surgical Instruction | |
[51] | 400~1000 | 2.8 | CCD | Push broom | Brain tissue | |
[52] | 486~700 | SnapScan hyperspectral camera | Head and neck cancer | |||
[53] | 450~900 | CRI Maestro imaging system, CCD | LCTF | Head and neck cancer | ||
[54] | 400~1000 900~1700 | Hyperspectral cameras | Push broom | Tongue tumor detection | ||
[55] | 550~1000 | 7.5 | CCD | AOTF | Melanoma segmentation | |
[56] | 500~1000 | 5 | TIVITA Tissue Camera | Push broom | ||
[57] | 500~1000 | 5 | TIVITA Tissue Camera | Push broom | Tissue segmentation | |
[58] | 450~680 | CMOS | LCTF | Stomach Cancer Classification | ||
[59] | 900~1700 | InGaAs Hyperspec® | Push broom | Stomach Cancer Classification | ||
[60] | 450~950 | CRI Maestro imaging system, CCD | LCTF | Head and neck cancer | ||
[61] | 510~900 | 6~10 | Compact imaging system | FPI | Hand-held | Diabetic skin complications |
[62] | 500~1000 | 5 | HSI Laparoscope | Monochromator | Push broom | Excised tissue reflectance measurement |
2.2.2. Fluorescence Hyperspectral Imaging System
2.2.3. Handheld Hyperspectral Imaging System
3. Medical Hyperspectral Image Analysis
3.1. Image Pre-Processing with Spectra
3.1.1. Normalization
3.1.2. Smoothing Denoising
3.1.3. Wave Selection
Principle | Advantages | Disadvantages | Differences and Similarities | |
---|---|---|---|---|
Ranking-based | Use a suitable function to quantify the amount of information in each band, and then select the top subset of bands according to their importance | Low computational complexity and fast execution of calculations for larger hyperspectral datasets | Correlation between bands is often not considered | Search-based, sparsity-based, and embedding-learning band selection methods are all optimization problems with objective functions; ranking-based and clustering-based band selection methods are all based on the importance of bands. And all band selection methods are designed to select the combination of bands with high information content, low correlation between bands, and best class separability. |
Search-based | The optimization problem of the criterion function is a multi-objective optimization to find the optimal frequency band | Only individual bands are considered, ignoring the entire subset of bands optimized | Computationally intensive and difficult to apply in practice | |
Clustering-based | The representative subset of frequency bands in the cluster of the component group | Entire subset of bands can be optimized; less affected by noise; simple algorithm | Poor robustness, easy to fall into local optimal solutions | |
Sparsity-based | Obtaining representative bands by dealing with sparsely constrained optimization problems | Can reduce the complexity of hyperspectral data processing; reduce storage space; improve model interpretability | Difficulty in automating model applications; uncertainty in model processing performance | |
Embedded learning-based | Optimize the objective function of a specific model and select the appropriate spectral band | Avoids repetitive training of the learner for each subset of bands | Performance-dependent parameter tuning and difficult objective function construction | |
Hybrid scheme-based | A synthesis of several band selection algorithms | Can find the best combination of frequency bands to get the least number of useful bands | Algorithm complexity |
3.1.4. Feature Dimensionality Reduction
Normalization | Smoothing Denoising | Wave Selection | Feature Dimensionality Reduction | Calibration | Remarks | |
---|---|---|---|---|---|---|
[43] | Normalized reflectance spectra | |||||
[31] | Normalized reflectance spectra | |||||
[33] | Normalized reflectance spectra | |||||
[63] | Normalized reflectance spectra | Glare Removal | ||||
[34] | Normalized reflectance spectra | Savitzky–Golay smoothing | Manual background segmentation, automatic region of interest (ROI) selection | |||
[80] | PCA | |||||
[35] | Savitzky–Golay smoothing | PCA | First-order derivation for spectral dimension preprocessing | |||
[17] | PCA | |||||
[36] | PCA | |||||
[37] | SNV | |||||
[81] | SNV | |||||
[82] | Normalized reflectance spectra | PCA | ||||
[38] | Normalized reflectance spectra | Fixed Reference t-Distributed Stochastic Neighbors Embedding | HySIME noise filtering and extreme noise band Removal and spectral averaging | |||
[83] | Normalized reflectance spectra | PCA | ||||
[39] | Normalized reflectance spectra | PCA | ||||
[84] | Shannon entropy | |||||
[40] | Machine learning pre-processing | |||||
[85] | Normalized reflectance spectra | PCA | Singular Spectrum Analysis (SSA) | |||
[41] | Normalized reflectance spectra | Smoothing filter noise processing | ||||
[86] | PCA | |||||
[31] | Normalized reflectance spectra | |||||
[42] | Normalized reflectance spectra | |||||
[87] | Normalized reflectance spectra | Smoothing filter noise processing | ||||
[88] | ICA | K-means | ||||
[43] | Normalized reflectance spectra | |||||
[44] | Normalized reflectance spectra | |||||
[45] | Normalized reflectance spectra | |||||
[89] | Normalized reflectance spectra | |||||
[90] | Normalized reflectance spectra | ACO | Band Selection for Ant Colony Optimization (ACO) | |||
[91] | PCA | |||||
[46] | Normalized reflectance spectra | PCA | ||||
[47] | Ratio between original Image and reference image | |||||
[48] | Normalized reflectance spectra | |||||
[51] | Normalized reflectance spectra | PCA | ||||
[52] | PCA | |||||
[49] | Normalized reflectance spectra | Smoothing filter noise processing | ||||
[53] | Normalized reflectance spectra | |||||
[54] | PCA | |||||
[55] | PCA | |||||
[56] | Median Filter | |||||
[57] | Normalized reflectance spectra | Savitzky–Golay smoothing, gaussian filtered spatial smoothing | PCA | Outlier removal, background recognition | ||
[92] | Standard normalization transformation | Gaussian filtered spatial smoothing | ||||
[59] | Normalized reflectance spectra | |||||
[60] | Normalized reflectance spectra | 3-order median filter, curvature correction | GFP bands removal | Background removal | ||
[61] | Normalized reflectance spectra | |||||
[62] | Normalized reflectance spectra |
3.2. Classification
3.3. Detection
3.4. Segmentation
References | Architecture | Methods | Detailed method | Applications | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ML | CNN | 3D CNN | 2D CNN | DenseNet | ResNet | UNet | AlexNet | FCN | Classification | Detection | Segmentation | |||
[31] | √ | √ | √ | 2DCNN + 3DCNN + Inception CNN | Head and neck cancer | |||||||||
[101] | √ | √ | CNN extracts topological embeddings, and in using binary classification | |||||||||||
[32] | √ | √ | DenseNet classification after dimensionality reduction using convolutional gated cyclic units | In vivo Tumors | ||||||||||
[33] | √ | √ | √ | 3D CNN and 2D inception CNN | Head and neck cancer | |||||||||
[63] | √ | √ | CNN classifier | Head and neck cancer | ||||||||||
[34] | √ | √ | KidneyResNet consisting of Resnet-18 | Ambient infusion | ||||||||||
[80] | √ | √ | Combining modulated Gabor and CNN in the MGCNN framework | Red blood cells | ||||||||||
[35] | √ | √ | √ | Spectral-Spatial-CNN with 3D convolution | Stomach Cancer | |||||||||
[17] | √ | √ | CNN training with different patch sizes after PCA dimensionality reduction | Red blood cells | ||||||||||
[36] | √ | √ | Gabor filter and CNN | Red blood cells | ||||||||||
[37] | √ | √ | CNN | Tissue classification | ||||||||||
[81] | √ | √ | √ | Compare the classification performance using (RBF-SVM), MLP, and 3DCNN | Stomach and Colon Cancer | |||||||||
[82] | √ | √ | Combining PCA, SVM, KNN classification with K-means for final weighted voting classification | Brain tumor | ||||||||||
[83] | √ | √ | SVM combined with ANN for classification | Identification of cancer cells | ||||||||||
[39] | √ | √ | √ | HybridSpectraNet (HybridSN) composed of 3D CNN and 2D CNN in spectral space | Colon Cancer | |||||||||
[84] | √ | √ | 3D CNN combined with 3D attention module for deep hypernetworks | White blood cells | ||||||||||
[40] | √ | √ | SICSURFIS HSI-CNN system composed of SICSURFIS imager and CNN | Skin disease | ||||||||||
[85] | √ | √ | Stacked auto encoder (SAE) | Tongue coating | ||||||||||
[93] | √ | √ | White blood cells | |||||||||||
[41] | √ | √ | K-means and SAM | Skin disease | ||||||||||
[86] | √ | √ | Two-channel deep fusion network EtoE-Fusion CNN for feature extraction | White and red blood cells | ||||||||||
[42] | √ | √ | Mapping RGB to high broad-spectrum domain with 2D CNN classification | Breast cancer | ||||||||||
[95] | √ | √ | The external U-Net handles spectral information, and the internal u handles spatial information, making up the UwU-Net classification | Drug position | ||||||||||
[18] | √ | √ | Regression-based partitioned deep convolutional networks | Head and neck cancer | ||||||||||
[94] | √ | √ | √ | √ | 1D, 2D, 3D CNN, RNN, MLP, SVM for comparison | Blood Classification | ||||||||
[87] | √ | √ | √ | √ | U-Net, 2D CNN, 1D DNN combined with classification | Brain cancer | ||||||||
[43] | √ | √ | Extracting image elements into patches into CNN | Head and neck cancer | ||||||||||
[44] | √ | √ | RF, SVM, MLP and K-Nearest Neighbor Comparison | Esophageal Cancer | ||||||||||
[45] | √ | √ | Pixel-level classification | Head and neck cancer | ||||||||||
[89] | √ | √ | √ | AlexNet combined with SVM | Corneal epithelial tissue | |||||||||
[90] | √ | √ | √ | Hybrid 3D-2D network for extracting spatial and spectral features | Brain cancer | |||||||||
[91] | √ | √ | CNN with support vector machine (SVM), random forest (RF) synthetic classification | Tissue classification | ||||||||||
[102] | √ | √ | LDA | Septicemia | ||||||||||
[48] | √ | √ | CNN architecture for inception-v4 | Head and neck cancer | ||||||||||
[103] | √ | √ | CNN architecture for inception-v4 | Head and neck cancer | ||||||||||
[51] | √ | √ | 2D CNN classification | Brain cancer | ||||||||||
[52] | √ | √ | RF, logistic regression, SVM comparative classification | Head and neck cancer | ||||||||||
[58] | √ | √ | ResNet34 | Stomach Cancer | ||||||||||
[92] | √ | √ | RF, SVM, MLP | Colon Cancer | ||||||||||
[59] | √ | √ | PCA downscaling, Spectral Angle Mapper (SAM) | Stomach Cancer | ||||||||||
[60] | √ | √ | Discrete Wavelet Transform (DWT) based feature extraction, SVM | Head and neck cancer | ||||||||||
[96] | √ | √ | Dual-stream convolution model | Tongue Tumor | ||||||||||
[97] | √ | √ | DenseNet-Blocks combined with 3D CNN to extract spatial spectral information | Head and neck cancer | ||||||||||
[46] | √ | √ | CNN with Deep Local Features (DELF) | Skin Features | ||||||||||
[49] | √ | √ | CNN and SVM + PCA + KNN are used, respectively | Head and neck cancer | ||||||||||
[99] | √ | √ | Select the channel and use U-Net | Head and neck cancer | ||||||||||
[55] | √ | √ | 3D full convolutional network with extended convolutional fast and fine-grained feature dual path | Melanoma | ||||||||||
[100] | √ | √ | The encoding part of U-Net uses transformer to extract the spectral information and convolution to extract the spatial information jointly | Carcinoma of bile duct | ||||||||||
[56] | √ | √ | Pixel-based, superpixel-based, patch-based, and full image-based data are fed into the CNN and U-Net, respectively | |||||||||||
[57] | √ | √ | Seven machine learning models and U-Net were used for the study, respectively | Image-guided surgery | ||||||||||
[98] | √ | √ | SegNet and dense full convolutional neural networks are used | Eye diseases |
3.5. Conclusions
4. Medical Hyperspectral Image Application Area
4.1. Medical Diagnosis
4.1.1. Stomach Cancer
4.1.2. Brain Cancer
4.1.3. Head and Neck Cancer
4.1.4. Skin Cancer
4.1.5. Eye Diseases
4.1.6. Colon Cancer
References | Applications | Different Methods | Different Achievements | ||
---|---|---|---|---|---|
Machine Learning | Deep learning | Accuracy | Sensitivity | ||
[59] | Stomach cancer | SAM | 90% | ||
[81] | 3DCNN | 93% | |||
[35] | CNN | 97.57% | 97.19% | ||
[58] | ResNet | 96.5% | 96.6% | ||
[87] | Brain cancer | U-Net, 2D CNN, 1D DNN | 94% | ||
[90] | 3D + 2D CNN | 80% | |||
[51] | 2D CNN | 88% | 77% | ||
[44] | Head and neck cancer | Random forest, SVM, MLP, and K-nearest neighbor | 63% (SVM) | 69% (SVM) | |
[52] | SVM | 93.5% | |||
[18] | Regression-deep CNN | 94.5% | 94% | ||
[63] | CNN | 96.4% | 96.8% | ||
[41] | Skin cancer | K-means, SAM | 87.5% | ||
[40] | CNN | 93% | |||
[104] | Eye diseases | ||||
[92] | Colon cancer | MLP | 86% | ||
[39] | 3D + 2D CNN | 88% |
4.2. Conclusion
5. Discussion
5.1. Hyperspectral Medical Image Processing vs. Hyperspectral Medical Image Diagnosis
5.2. Challenges and Opportunities
5.3. Datasets
- HSI Human Brain Database
- 2.
- MALDI rat liver anticancer drug spiked-in dataset (imzML)
- 3.
- The Hyperspectral SRS and Fluorescence data
- 4.
- A clinically translatable hyperspectral endoscopy (HySE) system for imaging the gastrointestinal tract
- 5.
- Parallel Implementations Assessment of a Spatial–Spectral Classifier for Hyperspectral Clinical Applications
- 6.
- Microscopic Hyperspectral Choledoch Dataset
- 7.
- Multispectral Imaging Dataset of Colorectal tissue
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peyghambari, S.; Zhang, Y. Hyperspectral remote sensing in lithological mapping, mineral exploration, and environmental geology: An updated review. J. Appl. Rem. Sens. 2021, 15, 031501. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral Remote Sensing Data Analysis and Future Challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Liu, B.; Liu, L.; Zhu, Y.; Hou, J.; Liu, P.; Li, X. A review of deep learning used in the hyperspectral image analysis for agriculture. Artif. Intell. Rev. 2021, 54, 5205–5253. [Google Scholar] [CrossRef]
- Seyrek, E.C.; Uysal, M. Classification of Hyperspectral Images with CNN in Agricultural Lands. Biol. Life Sci. Forum 2021, 3, 6. [Google Scholar]
- Lin, Y.; Ling, B.W.-K.; Hu, L.; Zheng, Y.; Xu, N.; Zhou, X.; Wang, X. Hyperspectral Image Enhancement by Two Dimensional Quaternion Valued Singular Spectrum Analysis for Object Recognition. Remote Sens. 2021, 13, 405. [Google Scholar] [CrossRef]
- Mahlein, A.-K.; Oerke, E.-C.; Steiner, U.; Dehne, H.-W. Recent advances in sensing plant diseases for precision crop protection. Eur. J. Plant Pathol. 2012, 133, 197–209. [Google Scholar] [CrossRef]
- Usha, K.; Singh, B. Potential applications of remote sensing in horticulture—A review. Sci. Hortic. 2013, 153, 71–83. [Google Scholar] [CrossRef]
- Huang, M.; Wan, X.; Zhang, M.; Zhu, Q. Detection of insect-damaged vegetable soybeans using hyperspectral transmittance image. J. Food Eng. 2013, 116, 45–49. [Google Scholar] [CrossRef]
- Temiz, H.T.; Ulaş, B. A Review of Recent Studies Employing Hyperspectral Imaging for the Determination of Food Adulteration. Photochem 2021, 1, 125–146. [Google Scholar] [CrossRef]
- Zhu, M.; Huang, D.; Hu, X.; Tong, W.; Han, B.; Tian, J.; Luo, H. Application of hyperspectral technology in detection of agricultural products and food: A Review. Food Sci. Nutr. 2020, 8, 5206–5214. [Google Scholar] [CrossRef]
- Lu, G.; Fei, B. Medical hyperspectral imaging: A review. J. Biomed. Opt. 2014, 19, 010901. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Meng, L.; Tianhong, C.; Zhaoyao, C.; Ran, T. Application of a hyperspectral image in medical field: A review. J. Image Graph. 2021, 26, 1764–1785. [Google Scholar]
- Li, Q.; He, X.; Wang, Y.; Liu, H.; Xu, D.; Guo, F. Review of spectral imaging technology in biomedical engineering: Achievements and challenges. J. Biomed. Opt. 2013, 18, 100901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, G.; Qin, X.; Wang, D.; Muller, S.; Zhang, H.; Chen, A.; Chen, Z.G.; Fei, B. Hyperspectral imaging of neoplastic progression in a mouse model of oral carcinogenesis. In Medical Imaging 2016: Biomedical Applications in Molecular, Structural, and Functional Imaging; SPIE: San Diego, CA, USA, 2016. [Google Scholar]
- Madooei, A.; Abdlaty, R.M.; Doerwald-Munoz, L.; Hayward, J.; Drew, M.S.; Fang, Q.; Zerubia, J. Hyperspectral Image Processing for Detection and Grading of Skin Erythema; Styner, M.A., Angelini, E.D., Eds.; SPIE: Orlando, FL, USA, 2017; p. 1013322. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Xiang, L.; Li, W.; Xiaodong, X.; Wei, H. Cell classification using convolutional neural networks in medical hyperspectral imagery. In Proceedings of the 2017 2nd International Conference on Image, Vision and Computing (ICIVC), Chengdu, China, 2–4 June 2017; pp. 501–504. [Google Scholar]
- Jeyaraj, P.R.; Samuel Nadar, E.R. Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm. J. Cancer Res. Clin. Oncol. 2019, 145, 829–837. [Google Scholar] [CrossRef]
- Wei-hong, H.; Yong-hong, H.; Peng, L.; Yi, Z.; Yong-hong, S.; Rui-sheng, L.; Nan, Z.; Hui, M. Development of imaging system for optical coherence tomography in ophthalmology. Opt. Precis. Eng. 2008, 16, 438–443. [Google Scholar]
- Khan, U.; Paheding, S.; Elkin, C.P.; Devabhaktuni, V.K. Trends in Deep Learning for Medical Hyperspectral Image Analysis. IEEE Access 2021, 9, 79534–79548. [Google Scholar] [CrossRef]
- Fei, B. Hyperspectral imaging in medical applications. In Data Handling in Science and Technology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 32, pp. 523–565. ISBN 978-0-444-63977-6. [Google Scholar]
- Sellar, R.G.; Boreman, G.D. Classification of imaging spectrometers for remote sensing applications. Opt. Eng. 2005, 44, 013602. [Google Scholar]
- Kulcke, A.; Holmer, A.; Wahl, P.; Siemers, F.; Wild, T.; Daeschlein, G. A compact hyperspectral camera for measurement of perfusion parameters in medicine. Biomed. Eng./Biomed. Tech. 2018, 63, 519–527. [Google Scholar] [CrossRef]
- Holmer, A.; Marotz, J.; Wahl, P.; Dau, M.; Kämmerer, P.W. Hyperspectral imaging in perfusion and wound diagnostics—Methods and algorithms for the determination of tissue parameters. Biomed. Eng./Biomed. Tech. 2018, 63, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Aiazzi, B.; Alparone, L.; Barducci, A.; Baronti, S.; Marcoionni, P.; Pippi, I.; Selva, M. Noise modelling and estimation of hyperspectral data from airborne imaging spectrometers. Ann. Geophys. 2006, 49. [Google Scholar]
- Jian, D. Research of Tumor Tissue Classification based on Medical Hyperspectral Imaging Analysis. Ph.D. dissertation, Xi’an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, Xi’an, China, December 2018. [Google Scholar]
- Gupta, N. Development of Staring Hyperspectral Imagers. In Proceedings of the 2011 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), Washington, DC, USA, 11–13 October 2011. [Google Scholar]
- Balas, C.; Pappas, C.; Epitropou, G. Multi/hyper-spectral imaging. In Handbook of Biomedical Optics; CRC Press: New York, NY, USA, 2011; pp. 131–164. [Google Scholar]
- Gao, L.; Kester, R.T.; Tkaczyk, T.S. Compact Image Slicing Spectrometer (ISS) for hyperspectral fluorescence microscopy. Opt. Express 2009, 17, 12293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weitzel, L.; Krabbe, A.; Kroker, H.; Thatte, N.; Tacconi-Garman, L.E.; Cameron, M.; Genzel, R. 3D: The next generation near-infrared imaging spectrometer. Astron. Astrophys. Suppl. Ser. 1996, 119, 531–546. [Google Scholar] [CrossRef] [Green Version]
- Halicek, M.; Little, J.V.; Wang, X.; Patel, M.R.; Griffith, C.C.; Chen, A.Y.; Fei, B. Tumor margin classification of head and neck cancer using hyperspectral imaging and convolutional neural networks. In Medical Imaging 2018: Image-Guided Procedures, Robotic Interventions, and Modeling; Webster, R.J., Fei, B., Eds.; SPIE: Houston, TX, USA, 2018; p. 4. [Google Scholar]
- Bengs, M.; Gessert, N.; Laffers, W.; Eggert, D.; Westermann, S.; Mueller, N.A.; Gerstner, A.O.H.; Betz, C.; Schlaefer, A. Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo Hyperspectral Tumor Type Classification. arXiv 2020, arXiv:2007.01042. [Google Scholar]
- Halicek, M.; Little, J.V.; Wang, X.; Chen, A.Y.; Fei, B. Optical biopsy of head and neck cancer using hyperspectral imaging and convolutional neural networks. J. Biomed. Opt. 2019, 24, 1. [Google Scholar] [CrossRef] [Green Version]
- Sommer, F.; Sun, B.; Fischer, J.; Goldammer, M.; Thiele, C.; Malberg, H.; Markgraf, W. Hyperspectral Imaging during Normothermic Machine Perfusion—A Functional Classification of Ex Vivo Kidneys Based on Convolutional Neural Networks. Biomedicines 2022, 10, 397. [Google Scholar] [CrossRef]
- Hu, B.; Du, J.; Zhang, Z.; Wang, Q. Tumor tissue classification based on micro-hyperspectral technology and deep learning. Biomed. Opt. Express 2019, 10, 6370. [Google Scholar] [CrossRef]
- Huang, Q.; Li, W.; Xie, X. Convolutional neural network for medical hyperspectral image classification with kernel fusion. In Proceedings of the BIBE 2018; International Conference on Biological Information and Biomedical Engineering, Shanghai, China, 6–8 June 2018. [Google Scholar]
- Barberio, M.; Collins, T.; Bencteux, V.; Nkusi, R.; Felli, E.; Viola, M.G.; Marescaux, J.; Hostettler, A.; Diana, M. Deep Learning Analysis of In Vivo Hyperspectral Images for Automated Intraoperative Nerve Detection. Diagnostics 2021, 11, 1508. [Google Scholar] [CrossRef]
- Fabelo, H.; Ortega, S.; Ravi, D.; Kiran, B.R.; Sosa, C.; Bulters, D.; Callicó, G.M.; Bulstrode, H.; Szolna, A.; Piñeiro, J.F.; et al. Spatio-spectral classification of hyperspectral images for brain cancer detection during surgical operations. PLoS ONE 2018, 13, e0193721. [Google Scholar] [CrossRef] [Green Version]
- Manni, F.; Fonolla, R.; van der Sommen, F.; Zinger, S.; Shan, C.; Kho, E.; de Koning, S.B.; Ruers, T.; de With, P.H.N. Hyperspectral imaging for colon cancer classification in surgical specimens: Towards optical biopsy during image-guided surgery. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 1169–1173. [Google Scholar]
- Lindholm, V.; Raita-Hakola, A.-M.; Annala, L.; Salmivuori, M.; Jeskanen, L.; Saari, H.; Koskenmies, S.; Pitkänen, S.; Pölönen, I.; Isoherranen, K.; et al. Differentiating Malignant from Benign Pigmented or Non-Pigmented Skin Tumours—A Pilot Study on 3D Hyperspectral Imaging of Complex Skin Surfaces and Convolutional Neural Networks. JCM 2022, 11, 1914. [Google Scholar] [CrossRef] [PubMed]
- Leon, R.; Martinez-Vega, B.; Fabelo, H.; Ortega, S.; Melian, V.; Castaño, I.; Carretero, G.; Almeida, P.; Garcia, A.; Quevedo, E.; et al. Non-Invasive Skin Cancer Diagnosis Using Hyperspectral Imaging for In-Situ Clinical Support. JCM 2020, 9, 1662. [Google Scholar] [CrossRef] [PubMed]
- Ortega, S.; Halicek, M.; Fabelo, H.; Guerra, R.; Lopez, C.; Lejeune, M.; Godtliebsen, F.; Callico, G.M.; Fei, B. Hyperspectral imaging and deep learning for the detection of breast cancer cells in digitized histological images. In Medical Imaging 2020: Digital Pathology; Tomaszewski, J.E., Ward, A.D., Eds.; SPIE: Houston, TX, USA, 2020; p. 30. [Google Scholar]
- Ma, L.; Lu, G.; Wang, D.; Wang, X.; Chen, Z.G.; Muller, S.; Chen, A.; Fei, B. Deep Learning Based Classification for Head and neck Cancer Detection with Hyperspectral Imaging in An Animal Model; Krol, A., Gimi, B., Eds.; SPIE: Orlando, FL, USA, 2017; p. 101372G. [Google Scholar]
- Maktabi, M.; Köhler, H.; Ivanova, M.; Jansen-Winkeln, B.; Takoh, J.; Niebisch, S.; Rabe, S.M.; Neumuth, T.; Gockel, I.; Chalopin, C. Tissue classification of oncologic esophageal resectates based on hyperspectral data. Int. J. CARS 2019, 14, 1651–1661. [Google Scholar] [CrossRef]
- Grigoroiu, A.; Yoon, J.; Bohndiek, S.E. Deep learning applied to hyperspectral endoscopy for online spectral classification. Sci. Rep. 2020, 10, 3947. [Google Scholar] [CrossRef] [Green Version]
- Manni, F.; van der Sommen, F.; Zinger, S.; Shan, C.; Holthuizen, R.; Lai, M.; Buström, G.; Hoveling, R.J.M.; Edström, E.; Elmi-Terander, A.; et al. Hyperspectral Imaging for Skin Feature Detection: Advances in Markerless Tracking for Spine Surgery. Appl. Sci. 2020, 10, 4078. [Google Scholar] [CrossRef]
- Ortega, S.; Fabelo, H.; Camacho, R.; de la Luz Plaza, M.; Callicó, G.M.; Sarmiento, R. Detecting brain tumor in pathological slides using hyperspectral imaging. Biomed. Opt. Express 2018, 9, 818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halicek, M.; Dormer, J.D.; Little, J.V.; Chen, A.Y.; Fei, B. Tumor detection of the thyroid and salivary glands using hyperspectral imaging and deep learning. Biomed. Opt. Express 2020, 11, 1383. [Google Scholar] [CrossRef]
- Halicek, M.; Fabelo, H.; Ortega, S.; Little, J.V.; Wang, X.; Chen, A.Y.; Callicó, G.M.; Myers, L.; Sumer, B.; Fei, B. Cancer detection using hyperspectral imaging and evaluation of the superficial tumor margin variance with depth. In Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling; Fei, B., Linte, C.A., Eds.; SPIE: San Diego, CA, USA, 2019; p. 45. [Google Scholar]
- Lin, J.; Clancy, N.T.; Sun, X.; Qi, J.; Janatka, M.; Stoyanov, D.; Elson, D.S. Probe-Based Rapid Hybrid Hyperspectral and Tissue Surface Imaging Aided by Fully Convolutional Networks. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016; Springer International Publishing: Cham, Switzerland, 2016; Volume 9902, pp. 414–422. ISBN 978-3-319-46725-2. [Google Scholar]
- Ortega, S.; Halicek, M.; Fabelo, H.; Camacho, R.; de la Plaza, M.L.; Godtliebsen, F.M.; Callicó, G.; Fei, B. Hyperspectral Imaging for the Detection of Glioblastoma Tumor Cells in H&E Slides Using Convolutional Neural Networks. Sensors 2020, 20, 1911. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Ma, L.; Brown, W.; Little, J.; Chen, A.; Myers, L.; Sumer, B.; Fei, B. Automatic detection of head and neck squamous cell carcinoma on pathologic slides using polarized hyperspectral imaging and machine learning. In Medical Imaging 2021: Digital Pathology; Tomaszewski, J.E., Ward, A.D., Eds.; SPIE: Bellingham, WA, USA, 2021; p. 23. [Google Scholar]
- Lu, G.; Little, J.V.; Wang, X.; Zhang, H.; Patel, M.R.; Griffith, C.C.; El-Deiry, M.W.; Chen, A.Y.; Fei, B. Detection of Head and Neck Cancer in Surgical Specimens Using Quantitative Hyperspectral Imaging. Clin. Cancer Res. 2017, 23, 5426–5436. [Google Scholar] [CrossRef] [Green Version]
- Trajanovski, S.; Shan, C.; Weijtmans, P.J.C.; de Koning, S.G.B.; Ruers, T.J.M. Tongue Tumor Detection in Hyperspectral Images Using Deep Learning Semantic Segmentation. IEEE Trans. Biomed. Eng. 2021, 68, 1330–1340. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Sun, L.; Wang, Y.; Zhou, M.; Hu, M.; Chen, J.; Wen, Y.; Li, Q. Identification of Melanoma From Hyperspectral Pathology Image Using 3D Convolutional Networks. IEEE Trans. Med. Imaging 2021, 40, 218–227. [Google Scholar] [CrossRef]
- Seidlitz, S.; Sellner, J.; Odenthal, J.; Özdemir, B.; Studier-Fischer, A.; Knödler, S.; Ayala, L.; Adler, T.; Kenngott, H.G.; Tizabi, M.; et al. Robust deep learning-based semantic organ segmentation in hyperspectral images. Med. Image Anal. 2022, 80, 102488. [Google Scholar] [CrossRef] [PubMed]
- Cervantes-Sanchez, F.; Maktabi, M.; Köhler, H.; Sucher, R.; Rayes, N.; Avina-Cervantes, J.G.; Cruz-Aceves, I.; Chalopin, C. Automatic tissue segmentation of hyperspectral images in liver and head neck surgeries using machine learning. AIS 2021, 1, 22–37. [Google Scholar] [CrossRef]
- Li, Y.; Deng, L.; Yang, X.; Liu, Z.; Zhao, X.; Huang, F.; Zhu, S.; Chen, X.; Chen, Z.; Zhang, W. Early diagnosis of gastric cancer based on deep learning combined with the spectral-spatial classification method. Biomed. Opt. Express 2019, 10, 4999. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Guo, Y.; Jiang, H.; Yi, W. Gastric cancer diagnosis using hyperspectral imaging with principal component analysis and spectral angle mapper. J. Biomed. Opt. 2020, 25, 1. [Google Scholar] [CrossRef]
- Ma, L.; Halicek, M.; Fei, B. In vivo cancer detection in animal model using hyperspectral image classification with wavelet feature extraction. In Medical Imaging 2020: Biomedical Applications in Molecular, Structural, and Functional Imaging; Gimi, B.S., Krol, A., Eds.; SPIE: Houston, TX, USA, 2020; p. 48. [Google Scholar]
- Dremin, V.; Marcinkevics, Z.; Zherebtsov, E.; Popov, A.; Grabovskis, A.; Kronberga, H.; Geldnere, K.; Doronin, A.; Meglinski, I.; Bykov, A. Skin Complications of Diabetes Mellitus Revealed by Polarized Hyperspectral Imaging and Machine Learning. IEEE Trans. Med. Imaging 2021, 40, 1207–1216. [Google Scholar] [CrossRef]
- Köhler, H.; Kulcke, A.; Maktabi, M.; Moulla, Y.; Jansen-Winkeln, B.; Barberio, M.; Diana, M.; Gockel, I.; Neumuth, T.; Chalopin, C. Laparoscopic system for simultaneous high-resolution video and rapid hyperspectral imaging in the visible and near-infrared spectral range. J. Biomed. Opt. 2020, 25, 086004. [Google Scholar] [CrossRef]
- Halicek, M.; Lu, G.; Little, J.V.; Wang, X.; Patel, M.; Griffith, C.C.; El-Deiry, M.W.; Chen, A.Y.; Fei, B. Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging. J. Biomed. Opt. 2017, 22, 060503. [Google Scholar] [CrossRef]
- Akbari, H.; Halig, L.V.; Zhang, H.; Wang, D.; Chen, Z.G.; Fei, B. Detection of cancer metastasis using a novel macroscopic hyperspectral method. In Medical Imaging 2012: Biomedical Applications in Molecular, Structural, and Functional Imaging; SPIE: San Diego, CA, USA, 2012; Volume 8317, pp. 299–305. [Google Scholar]
- Lu, G.; Halig, L.; Wang, D.; Qin, X.; Chen, Z.G.; Fei, B. Spectral-spatial classification for noninvasive cancer detection using hyperspectral imaging. J. Biomed. Opt. 2014, 19, 106004. [Google Scholar] [CrossRef] [Green Version]
- Raita-Hakola, A.-M.; Annala, L.; Lindholm, V.; Trops, R.; Näsilä, A.; Saari, H.; Ranki, A.; Pölönen, I. FPI Based Hyperspectral Imager for the Complex Surfaces—Calibration, Illumination and Applications. Sensors 2022, 22, 3420. [Google Scholar] [CrossRef] [PubMed]
- Zherebtsov, E.; Dremin, V.; Popov, A.; Doronin, A.; Kurakina, D.; Kirillin, M.; Meglinski, I.; Bykov, A. Hyperspectral imaging of human skin aided by artificial neural networks. Biomed. Opt. Express 2019, 10, 3545–3559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baig, N.; Fabelo, H.; Ortega, S.; Callico, G.M.; Alirezaie, J.; Umapathy, K. Empirical Mode Decomposition Based Hyperspectral Data Analysis for Brain Tumor Classification. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EM0BC), Guadalajara, Mexico, 1–5 November 2021; pp. 2274–2277. [Google Scholar]
- Fei, B.; Lu, G.; Halicek, M.T.; Wang, X.; Zhang, H.; Little, J.V.; Magliocca, K.R.; Patel, M.; Griffith, C.C.; El-Deiry, M.W. Label-free hyperspectral imaging and quantification methods for surgical margin assessment of tissue specimens of cancer patients. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Korea, 11–15 July 2017; pp. 4041–4045. [Google Scholar]
- Lu, G.; Wang, D.; Qin, X.; Halig, L.; Muller, S.; Zhang, H.; Chen, A.; Pogue, B.W.; Chen, Z.G.; Fei, B. Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery. J. Biomed. Opt. 2015, 20, 126012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, S.G.; Du, Z.; Martin, M.; Vo-Dinh, T. Hyperspectral fluorescence image analysis for use in medical diagnostics. In Advanced Biomedical and Clinical Diagnostic Systems III; SPIE: San Jose, CA, USA, 2005; Volume 5692, pp. 21–28. [Google Scholar]
- Markgraf, W.; Lilienthal, J.; Feistel, P.; Thiele, C.; Malberg, H. Algorithm for mapping kidney tissue water content during normothermic machine perfusion using hyperspectral imaging. Algorithms 2020, 13, 289. [Google Scholar] [CrossRef]
- Mou, L.; Saha, S.; Hua, Y.; Bovolo, F.; Bruzzone, L.; Zhu, X.X. Deep Reinforcement Learning for Band Selection in Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Sun, W.; Du, Q. Hyperspectral Band Selection: A Review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 118–139. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Q.; Li, X. Hyperspectral Band Selection via Adaptive Subspace Partition Strategy. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4940–4950. [Google Scholar] [CrossRef]
- Sun, W.; Peng, J.; Yang, G.; Du, Q. Fast and Latent Low-Rank Subspace Clustering for Hyperspectral Band Selection. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3906–3915. [Google Scholar] [CrossRef]
- Li, W.; Du, Q. Gabor-filtering-based nearest regularized subspace for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1012–1022. [Google Scholar] [CrossRef]
- Li, W.; Chen, C.; Su, H.; Du, Q. Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3681–3693. [Google Scholar] [CrossRef]
- Yu, H.; Yang, J. A direct LDA algorithm for high-dimensional data—With application to face recognition. Pattern Recognit. 2001, 34, 2067–2070. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Li, W.; Zhang, B.; Li, Q.; Tao, R.; Lovell, N.H. Blood Cell Classification Based on Hyperspectral Imaging With Modulated Gabor and CNN. IEEE J. Biomed. Health Inform. 2020, 24, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Collins, T.; Maktabi, M.; Barberio, M.; Bencteux, V.; Jansen-Winkeln, B.; Chalopin, C.; Marescaux, J.; Hostettler, A.; Diana, M.; Gockel, I. Automatic Recognition of Colon and Esophagogastric Cancer with Machine Learning and Hyperspectral Imaging. Diagnostics 2021, 11, 1810. [Google Scholar] [CrossRef]
- Torti, E.; Florimbi, G.; Castelli, F.; Ortega, S.; Fabelo, H.; Callicó, G.; Marrero-Martin, M.; Leporati, F. Parallel K-Means Clustering for Brain Cancer Detection Using Hyperspectral Images. Electronics 2018, 7, 283. [Google Scholar] [CrossRef] [Green Version]
- Nathan, M.; Kabatznik, A.S.; Mahmood, A. Hyperspectral imaging for cancer detection and classification. In Proceedings of the 2018 3rd Biennial South African Biomedical Engineering Conference (SAIBMEC), Stellenbosch, South Africa, 4–6 April 2018; pp. 1–4. [Google Scholar]
- Wang, Q.; Wang, J.; Zhou, M.; Li, Q.; Wen, Y.; Chu, J. A 3D attention networks for classification of white blood cells from microscopy hyperspectral images. Opt. Laser Technol. 2021, 139, 106931. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, J.; Wang, Z.; Sun, M. Tongue colour and coating prediction in traditional Chinese medicine based on visible hyperspectral imaging. IET Image Process 2019, 13, 2265–2270. [Google Scholar] [CrossRef]
- Wei, X.; Li, W.; Zhang, M.; Li, Q. Medical Hyperspectral Image Classification Based on End-to-End Fusion Deep Neural Network. IEEE Trans. Instrum. Meas. 2019, 68, 4481–4492. [Google Scholar] [CrossRef]
- Fabelo, H.; Halicek, M.; Ortega, S.; Shahedi, M.; Szolna, A.; Piñeiro, J.; Sosa, C.; O’Shanahan, A.; Bisshopp, S.; Espino, C.; et al. Deep Learning-Based Framework for In Vivo Identification of Glioblastoma Tumor using Hyperspectral Images of Human Brain. Sensors 2019, 19, 920. [Google Scholar] [CrossRef]
- Masood, K.; Rajpoot, N.; Rajpoot, K.; Qureshi, H. Hyperspectral Colon Tissue Classification using Morphological Analysis. In Proceedings of the 2006 International Conference on Emerging Technologies, Peshawar, Pakistan, 13–14 November 2006; pp. 735–741. [Google Scholar]
- Md Noor, S.; Ren, J.; Marshall, S.; Michael, K. Hyperspectral Image Enhancement and Mixture Deep-Learning Classification of Corneal Epithelium Injuries. Sensors 2017, 17, 2644. [Google Scholar] [CrossRef] [Green Version]
- Manni, F.; van der Sommen, F.; Fabelo, H.; Zinger, S.; Shan, C.; Edström, E.; Elmi-Terander, A.; Ortega, S.; Marrero Callicó, G.; de With, P.H.N. Hyperspectral Imaging for Glioblastoma Surgery: Improving Tumor Identification Using a Deep Spectral-Spatial Approach. Sensors 2020, 20, 6955. [Google Scholar] [CrossRef]
- Urbanos, G.; Martín, A.; Vázquez, G.; Villanueva, M.; Villa, M.; Jimenez-Roldan, L.; Chavarrías, M.; Lagares, A.; Juárez, E.; Sanz, C. Supervised Machine Learning Methods and Hyperspectral Imaging Techniques Jointly Applied for Brain Cancer Classification. Sensors 2021, 21, 3827. [Google Scholar] [CrossRef] [PubMed]
- Jansen-Winkeln, B.; Barberio, M.; Chalopin, C.; Schierle, K.; Diana, M.; Köhler, H.; Gockel, I.; Maktabi, M. Feedforward Artificial Neural Network-Based Colorectal Cancer Detection Using Hyperspectral Imaging: A Step towards Automatic Optical Biopsy. Cancers 2021, 13, 967. [Google Scholar] [CrossRef] [PubMed]
- Hegde, R.B.; Prasad, K.; Hebbar, H.; Singh, B.M.K. Comparison of traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood smear images. Biocybern. Biomed. Eng. 2019, 39, 382–392. [Google Scholar] [CrossRef]
- Książek, K.; Romaszewski, M.; Głomb, P.; Grabowski, B.; Cholewa, M. Blood Stain Classification with Hyperspectral Imaging and Deep Neural Networks. Sensors 2020, 20, 6666. [Google Scholar] [CrossRef] [PubMed]
- Manifold, B.; Men, S.; Hu, R.; Fu, D. A versatile deep learning architecture for classification and label-free prediction of hyperspectral images. Nat. Mach. Intell. 2021, 3, 306–315. [Google Scholar] [CrossRef]
- Weijtmans, P.J.C.; Shan, C.; Tan, T.; Brouwer de Koning, S.G.; Ruers, T.J.M. A Dual Stream Network for Tumor Detection in Hyperspectral Images. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019; pp. 1256–1259. [Google Scholar]
- Bengs, M.; Westermann, S.; Gessert, N.; Eggert, D.; Gerstner, A.O.H.; Mueller, N.A.; Betz, C.; Laffers, W.; Schlaefer, A. Spatio-spectral deep learning methods for in-vivo hyperspectral laryngeal cancer detection. In Medical Imaging 2020: Computer-Aided Diagnosis; SPIE: Houston, TX, USA, 2020. [Google Scholar]
- Garifullin, A.; Koobi, P.; Ylitepsa, P.; Adjers, K.; Hauta-Kasari, M.; Uusitalo, H.; Lensu, L. Hyperspectral Image Segmentation of Retinal Vasculature, Optic Disc and Macula. In Proceedings of the 2018 Digital Image Computing: Techniques and Applications (DICTA), Canberra, Australia, 10–13 December 2018; pp. 1–5. [Google Scholar]
- Trajanovski, S.; Shan, C.; Weijtmans, P.J.C. Tumor Semantic Segmentation in Hyperspectral Images using Deep Learning. In Proceedings of the International Conference on Medical Imaging with Deep Learning--Extended Abstract Track, London, UK, April 2019. [Google Scholar]
- Yun, B.; Wang, Y.; Chen, J.; Wang, H.; Shen, W.; Li, Q. SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation. arXiv 2021, arXiv:2103.03604. [Google Scholar]
- Pawlowski, N.; Bhooshan, S.; Ballas, N.; Ciompi, F.; Glocker, B.; Drozdzal, M. Needles in Haystacks: On Classifying Tiny Objects in Large Images. arXiv 2020, arXiv:1908.06037. [Google Scholar]
- Dietrich, M.; Seidlitz, S.; Schreck, N.; Wiesenfarth, M.; Godau, P.; Tizabi, M.; Sellner, J.; Marx, S.; Knödler, S.; Allers, M.M.; et al. Machine learning-based analysis of hyperspectral images for automated sepsis diagnosis. arXiv 2021, arXiv:2106.08445. [Google Scholar]
- Halicek, M.; Dormer, J.D.; Little, J.V.; Chen, A.Y.; Myers, L.; Sumer, B.D.; Fei, B. Hyperspectral Imaging of Head and Neck Squamous Cell Carcinoma for Cancer Margin Detection in Surgical Specimens from 102 Patients Using Deep Learning. Cancers 2019, 11, 1367. [Google Scholar] [CrossRef] [Green Version]
- Hadoux, X.; Hui, F.; Lim, J.K.H.; Masters, C.L.; Pébay, A.; Chevalier, S.; Ha, J.; Loi, S.; Fowler, C.J.; Rowe, C.; et al. Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer’s disease. Nat. Commun. 2019, 10, 4227. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, R.; Yu, H.; Xu, T.; Xing, X.; Cao, X.; Yan, K.; Chen, J. Deep Learning in Medical Hyperspectral Images: A Review. Sensors 2022, 22, 9790. https://doi.org/10.3390/s22249790
Cui R, Yu H, Xu T, Xing X, Cao X, Yan K, Chen J. Deep Learning in Medical Hyperspectral Images: A Review. Sensors. 2022; 22(24):9790. https://doi.org/10.3390/s22249790
Chicago/Turabian StyleCui, Rong, He Yu, Tingfa Xu, Xiaoxue Xing, Xiaorui Cao, Kang Yan, and Jiexi Chen. 2022. "Deep Learning in Medical Hyperspectral Images: A Review" Sensors 22, no. 24: 9790. https://doi.org/10.3390/s22249790
APA StyleCui, R., Yu, H., Xu, T., Xing, X., Cao, X., Yan, K., & Chen, J. (2022). Deep Learning in Medical Hyperspectral Images: A Review. Sensors, 22(24), 9790. https://doi.org/10.3390/s22249790