Research on Ultra-Wideband NLFM Waveform Synthesis and Grating Lobe Suppression
Abstract
:1. Introduction
2. Wideband Synthesis of LFM Waveform
Principle of Frequency Domain Wideband Synthesis
3. Wideband Synthesis of NLFM Waveform
3.1. Stepped-Frequency FM Waveform Model
3.2. Frequency Domain Wideband Synthesis of NLFM Waveform
3.3. Cause of Grating Lobes
Random Carrier Frequency Spacing
3.4. Multisubpulse UWB NLFM Waveform Synthesis Method
4. Experimental Verification and Analysis
4.1. Experimental Verification and Analysis
4.2. Single-Point Target Experiment
4.3. Single-Point Target Experiment
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, H.-B.; Zhang, Y.-H.; Wu, J. Sidelobes and Grating Lobes Reduction of Stepped-Frequency Chirp Signal. In Proceedings of the 2005 IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Beijing, China, 8–12 August 2005. [Google Scholar] [CrossRef]
- Zhong, L.-H.; Han, B.; Hu, D.-H.; Ding, C.-B. Grafting Lobe Suppression for Frequency-stepped LFM Signal by Apodization Filtering. J. Electron. Inf. Technol. 2013, 35, 545–551. [Google Scholar] [CrossRef]
- Levanon, N.; Mozeson, E. Nullifying ACF grating lobes in stepped-frequency train of LFM pulses. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 694–703. [Google Scholar] [CrossRef]
- Wang, Y. Bandwidth synthesis for stepped chirp signal: A multichannel sampling prospective. In Proceedings of the IET International Radar Conference 2013, Xi’an, China, 14–16 April 2013. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, T.; Cui, K.; Yu, T.; Jiang, Q.; Zhang, R.; Li, J.; Hu, C. High-Resolution and Low Blind Range Waveform for Migratory Insects’ Taking-Off and Landing Behavior Observation. Remote Sens. 2022, 14, 3034. [Google Scholar] [CrossRef]
- Ma, Y.; Xie, X.; Liu, F.; Tian, W. Research on grating lobe suppression technology of stepped frequency chirp signal. In Proceedings of the IET International Radar Conference (IET IRC 2020), Online, 4–6 November 2020. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, X.; Xu, M. NLFM waveform design and pulse compression performance analysi. Manuf. Autom. 2012, 34, 78–80. [Google Scholar]
- Long, T.; Mao, E.; He, P. Analysis and processing of modulated frequency stepped radar signal. Acta Eletronica Sin. 1998, 26, 84–88. [Google Scholar]
- Liu, Y.; Zhang, Y. Analysis of Speed Compensation for Synthetic Wideband One-dimensional Range Profile about Extended-targets Simulation. Electron. Technol. 2022, 51, 55–57. [Google Scholar]
- Kebin, H.; Xiaoling, Z.; Hui, W.; Jun, S. A novel synthetic bandwidth method in BP image space for stepped-frequency SAR. In Proceedings of the 2014 IEEE Radar Conference, Cincinnati, OH, USA, 19–23 May 2014. [Google Scholar] [CrossRef]
- Liu, P.; Zou, L.; Zhou, Y.; Yu, X.; Wang, X. An Ultra-Low Sidelobe Pulse Compression Method Based on Nonlinear Frequency Modulation Signal. Radar Sci. Technol. 2014, 12, 527–531. [Google Scholar]
- Liu, Y.; Shan, T.; Feng, Y. Research on the range side lobe suppression method for modulated stepped frequency radar signals. AIP Conf. Proceeding 2018, 1967, 020036. [Google Scholar] [CrossRef]
- Luan, T.; Han, J.; Luo, F.; Ni, T.; Zhao, Q. The Design of Matched Filter for NLFM Signal based on Combination Window. Space Electron. Technol. 2010, 7, 11–14+23. [Google Scholar]
- Yang, M.; Zhang, S.; Chen, B.; Zhang, H. A Novel Signal Processing Approach for the Multi-Carrier MIMO Radar. J. Electron. Inf. Technol. 2009, 31, 147–151. [Google Scholar] [CrossRef]
- Rabideau, D. Nonlinear synthetic wideband waveforms. In Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322), Long Beach, CA, USA, 25–25 April 2002. [Google Scholar] [CrossRef]
- Prager, S.; Thrivikraman, T.; Haynes, M.S.; Stang, J.; Hawkins, D.; Moghaddam, M. Ultrawideband Synthesis for High-Range-Resolution Software-Defined Radar. IEEE Trans. Instrum. Meas. 2019, 69, 3789–3803. [Google Scholar] [CrossRef]
- Prager, S.; Sexstone, G.; McGrath, D.; Fulton, J.; Moghaddam, M. Snow Depth Retrieval With an Autonomous UAV-Mounted Software-Defined Radar. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–16. [Google Scholar] [CrossRef]
- El-Shennawy, K.; Alim, O.; Ezz-El-Arab, M. Sidelobe Suppression in Low and High Time-Bandwidth Products of Linear FM Pulse Compression Filters. IEEE Trans. Microw. Theory Tech. 1987, 35, 807–811. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, X. Research on Suppression of Fresnel Ripples in Small Time-band Width. Fire Control. Command. Control. 2014, 39, 42–44. [Google Scholar]
- Yin, C.; Luo, F.; Gao, Y.; He, H. Research on Spectra Modified Pulse Compression of S-Mode Nonlinear Frequency Modulated Signal. Radar Sci. Technol. 2008, 2, 134–137+142. [Google Scholar]
- Wang, J.; Luo, F.; Fu, S. Research and Application of Range Sidelobe Reduction Based on the Spectrum Modification Technique. Electron. Sci. Technol. 2010, 23, 32–34+84. [Google Scholar] [CrossRef]
- Niu, Q.; Zhang, X. Hardware-in-the-loop Simulation of P-band Radar with Stepped Frequency Chirp Signals. J. Microw. 2020, 36, 19–23. [Google Scholar] [CrossRef]
- Singh, A.K.; Bae, K.-B.; Park, S.-O. NLFM pulse radar for drone detection using predistortion technique. J. Electromagn. Waves Appl. 2020, 35, 416–429. [Google Scholar] [CrossRef]
- Ding, Z.; Guo, Y.; Gao, W.; Kang, Q.; Zeng, T.; Long, T. A Range Grating Lobes Suppression Method for Stepped-Frequency SAR Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5677–5687. [Google Scholar] [CrossRef]
Bandwidth/MHz | Range Resolution/m | ISLR/dB | PSLR/dB | |
---|---|---|---|---|
Ideal NLFM waveform | 347.5 | 0.5615 | −34.2 | −42.7 |
Uniform carrier frequency spacing | 347.5 | 0.5615 | −22.4 | −41.2 |
Nonuniform carrier frequency spacing | 347.5 | 0.5615 | −22.6 | −42.1 |
Uniform carrier frequency spacing (spectral correction) | 347.5 | 0.5615 | −27.2 | −42.2 |
Nonuniform carrier frequency spacing (spectral correction) | 347.5 | 0.5615 | −27.5 | −42.5 |
Parameter | Value |
---|---|
Start frequency/MHz | 508 |
Stop frequency/MHz | 1978 |
Subpulse bandwidth/MHz | 36 |
Reference frequency/MHz | 10 |
Frequency step size/MHz | 30 |
Sampling rate/MHz | 50 |
Output power/dBm | 10 |
Number of subpulses | 50 |
Window | Hamming |
Bandwidth/MHz | Time Resolution/ns | ISLR/dB | PSLR/dB | |
---|---|---|---|---|
Ideal NLFM waveform | 1506 | 0.8667 | −34.3 | −43.9 |
Frequency domain wideband synthesis | 1506 | 0.8667 | −19.3 | −28.6 |
The proposed method | 1506 | 0.8667 | −23.8 | −33.4 |
Group Delay/ns | Two-Point Target Experiment | Three-Point Target Experiment |
---|---|---|
Target 1 | 201.914 | 201.914 |
Target 2 | 210.094 | 205.521 |
Target 3 | 210.094 | |
Minimum delay difference between targets | 8.180 | 3.607 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Jia, Y.; Liu, Y.; Zhang, X. Research on Ultra-Wideband NLFM Waveform Synthesis and Grating Lobe Suppression. Sensors 2022, 22, 9829. https://doi.org/10.3390/s22249829
Liu S, Jia Y, Liu Y, Zhang X. Research on Ultra-Wideband NLFM Waveform Synthesis and Grating Lobe Suppression. Sensors. 2022; 22(24):9829. https://doi.org/10.3390/s22249829
Chicago/Turabian StyleLiu, Shuyi, Yan Jia, Yongqing Liu, and Xiangkun Zhang. 2022. "Research on Ultra-Wideband NLFM Waveform Synthesis and Grating Lobe Suppression" Sensors 22, no. 24: 9829. https://doi.org/10.3390/s22249829
APA StyleLiu, S., Jia, Y., Liu, Y., & Zhang, X. (2022). Research on Ultra-Wideband NLFM Waveform Synthesis and Grating Lobe Suppression. Sensors, 22(24), 9829. https://doi.org/10.3390/s22249829