A Resilient Method for Visual–Inertial Fusion Based on Covariance Tuning
Abstract
:1. Introduction
2. Methods and Principles
2.1. Construction of the Factor Graph
2.2. Visual Reprojection Factor
2.3. IMU Preintegration Factor
2.4. Covariance Tuning Based on Unit-Weight RMSE
2.5. Re-Optimization
3. Experiments and Analysis
3.1. Effectiveness of Covariance Tuning
3.2. Experimental Analysis of the Resilient Covariance Tuning-Based Visual–Inertial Fusion Algorithm
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
viSLAM | Visual–inertial simultaneous localization and mapping |
RMSE | Root-mean-square error |
PNT | Positioning navigation and time |
VINS | Visual–inertial navigation systems |
SLAM | Simultaneous localization and mapping |
VSLAM | Visual simultaneous localization and mapping system |
VO | Visual odometry |
LIBVISO | Library for visual odometry |
SVO | Semi-direct monocular visual odometry |
DSO | Direct sparse odometry |
BA | Bundle adjustment |
PTAM | Parallel tracking and mapping |
IMUs | Inertial measurement units |
FGO | Factor graph optimization |
MSCKF | Multi-state constraint Kalman filter |
UKF | Unscented Kalman filter |
EKF | Extended Kalman filter |
MAP | Maximum-a-posteriori |
RMSEs | Root-mean-square errors |
GFTT | Good Features To Track |
SfM | Structure from motion |
EPnP | efficient perspecitve-n-point |
UAV | Unmanned aerial vehicle |
ROS | Robot Operating System |
RMS-APE | Root-mean-square absolute pose error |
References
- Yang, Y. Concepts of comprehensive PNT and related key technologies. Acta Geod. Cartogr. Sin. 2016, 45, 505. [Google Scholar]
- Yang, Y. Resilient PNT concept fame. Acta Geod. Cartogr. Sin. 2018, 47, 893–898. [Google Scholar]
- Huang, G. Visual-inertial Navigation: A Concise Review. In Proceedings of the International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 9572–9582. [Google Scholar]
- Kitt, B.; Geiger, A.; Lategahn, H. Visual Odometry Based on Stereo Image Sequences with RANSAC-Based Outlier Rejection Scheme. In Proceedings of the 2010 IEEE Intelligent Vehicles Symposium, La Jolla, CA, USA, 21–24 June 2010; pp. 486–492. [Google Scholar]
- Forster, C.; Pizzoli, M.; Scaramuzza, D. SVO: Fast Semi-direct Monocular Visual Odometry. In Proceedings of the International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 15–22. [Google Scholar]
- Engel, J.; Koltun, V.; Cremers, D. Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Davison, A.J.; Reid, I.D.; Molton, N.D.; Stasse, O. MonoSLAM: Real-Time Single Camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 1052–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, G.; Murray, D. Parallel Tracking and Mapping for Small AR Workspaces. In Proceedings of the 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, Nara, Japan, 13–16 November 2007; pp. 225–234. [Google Scholar]
- Strasdat, H.; Montiel, J.M.; Davison, A.J. Real-time monocular SLAM: Why filter? In Proceedings of the International Conference on Robotics and Automation (ICRA), Anchorage, AK, USA, 3–7 May 2010; pp. 2657–2664. [Google Scholar]
- Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans. Robot. 2015, 31, 1147–1163. [Google Scholar] [CrossRef] [Green Version]
- Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-scale direct monocular slam. Eur. Conf. Comput. Vis. 2014, 8690, 834–849. [Google Scholar]
- Shen, S.; Michael, N.; Kumar, V. Tightly-coupled monocular visual-inertial fusion for autonomous flight of rotorcraft MAVs. In Proceedings of the IEEE International Conference on Robotics and Automation, Seattle, WA, USA, 26–30 May 2015; pp. 5303–5310. [Google Scholar]
- Mourikis, A.I.; Roumeliotis, S.I. A Multi-state Constraint Kalman Filter for Vision-Aided Inertial Navigation. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007; pp. 3565–3572. [Google Scholar]
- Wu, K.J.; Ahmed, A.M.; Georgiou, G.A.; Roumeliotis, S.I. A Square Root Inverse Filter for Efficient Vision-aided Inertial Navigation on Mobile Devices. In Proceedings of the Robotics: Science and Systems, Rome, Italy, 13–17 July 2015. [Google Scholar]
- Paul, M.K.; Wu, K.; Hesch, J.A.; Nerurkar, E.D.; Roumeliotis, S.I. A Comparative Analysis of Tightly-coupled Monocular, Binocular, and Stereo VINS. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 165–172. [Google Scholar]
- Hu, J.S.; Chen, M.Y. A Sliding-window Visual-IMU Odometer Based on Tri-focal Tensor Geometry. In Proceedings of the International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 3963–3968. [Google Scholar]
- Bloesch, M.; Omari, S.; Hutter, M.; Siegwart, R. Robust Visual Inertial Odometry Using a Direct EKF-Based Approach. In Proceedings of the IEEE Publications/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 298–304. [Google Scholar]
- Huai, Z.; Huang, G. Robocentric Visual–Inertial Odometry. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 6319–6326. [Google Scholar]
- Geneva, P.; Eckenhoff, K.; Lee, W.; Yang, Y.; Huang, G. OpenVINS: A Research Platform for Visual–Inertial Estimation. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 4666–4672. [Google Scholar]
- Kaess, M.; Johannsson, H.; Roberts, R.; Ila, V.; Leonard, J.J.; Dellaert, F. iSAM2: Incremental smoothing and mapping using the Bayes tree. Int. J. Robot. Res. 2011, 31, 216–235. [Google Scholar] [CrossRef]
- Mur-Artal, R.; Tardos, J.D. Visual-Inertial Monocular SLAM With Map Reuse. IEEE Robot. Autom. Lett. 2017, 2, 796–803. [Google Scholar] [CrossRef] [Green Version]
- Leutenegger, S.; Lynen, S.; Bosse, M.; Siegwart, R.; Furgale, P. Keyframe-based visual–inertial odometry using nonlinear optimization. Int. J. Robot. Res. 2015, 34, 314–334. [Google Scholar] [CrossRef] [Green Version]
- Qin, T.; Li, P.; Shen, S. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE Trans. Robot. 2018, 34, 1004–1020. [Google Scholar] [CrossRef] [Green Version]
- Campos, C.; Elvira, R.; Rodriguez, J.J.G.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890. [Google Scholar] [CrossRef]
- Lupton, T.; Sukkarieh, S. Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built Environments Without Initial Conditions. IEEE Trans. Robot. 2011, 28, 61–76. [Google Scholar] [CrossRef]
- Forster, C.; Carlone, L.; Dellaert, F.; Scaramuzza, D. On-Manifold Preintegration for Real-Time Visual--Inertial Odometry. IEEE Trans. Robot. 2016, 33, 1–21. [Google Scholar] [CrossRef]
- Yang, Y.; He, H.; Xu, G. Adaptively robust filtering for kinematic geodetic positioning. J. Geod. 2001, 75, 109–116. [Google Scholar] [CrossRef]
- Yang, Y.X.; Gao, W.G. Integrated navigation based on robust estimation outputs of multi-sensor measurements and adaptive weights of dynamic model information. Geom. Inf. Sci. Wuhan Univ. 2004, 29, 885–888. [Google Scholar]
- Yang, Y.X.; Gao, W.G. Integrated navigation by using variance component estimates of multi-sensor measurements and adaptive weights of dynamic model information. Acta Geod. Cartogr. Sin. 2004, 33, 22–26. [Google Scholar]
- Burri, M.; Nikolic, J.; Gohl, P.; Schneider, T.; Rehder, J.; Omari, S.; Achtelik, M.W.; Siegwart, R. The EuRoC micro aerial vehicle datasets. Int. J. Robot. Res. 2016, 35, 1157–1163. [Google Scholar] [CrossRef]
- Shi, J.B.; Tomasi, C. Good Features to Track. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 21–23 June 1994; pp. 593–600. [Google Scholar]
- Lucas, B.D.; Kanade, T. An Iterative Image Registration Technique with an Application to Stereo Vision. In Proceedings of the 7th International Joint Conferences on Artificial Intelligence, Vancouver, BC, Canada, 24–28 August 1981; pp. 674–679. [Google Scholar]
- Qin, T.; Shen, S. Robust Initialization of Monocular Visual—Inertial Estimation on Aerial Robots. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 4225–4232. [Google Scholar]
- Lepetit, V.; Moreno-Noguer, F.; Fua, P. EPnP: An Accurate O(n) Solution to the PnP Problem. Int. J. Comput. Vis. 2008, 81, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Sibley, G.; Matthies, L.; Sukhatme, G. Sliding window filter with application to planetary landing. J. Field Robot. 2010, 27, 587–608. [Google Scholar] [CrossRef]
Sub-Dataset | Quantity of Segments | Difficulty | Traveled Distance/m |
---|---|---|---|
MH01–MH05 | 5 | E/E/M/D/D | 80.6/73.5/130.9/91.7/97.6 |
V101–V103 | 3 | E/M/D | 58.6/75.9/79.0 |
V201–V203 | 3 | E/M/D | 36.5/83.2/86.1 |
Sub-Dataset | Difficulty | Our Algorithm | VINS-Mono | R-VIO | OKVIS | Improvement in Precision Compared to VINS-Mono |
---|---|---|---|---|---|---|
MH01 | Easy | 0.101233 | 0.157314 | 0.328240 | 0.331345 | 35.65% |
MH02 | Easy | 0.131429 | 0.178440 | 0.639892 | 0.387684 | 26.35% |
MH03 | Medium | 0.174250 | 0.195266 | 0.233700 | 0.268468 | 10.76% |
MH04 | Hard | 0.315295 | 0.439647 | 1.297599 | 0.287485 | 28.28% |
MH05 | Hard | 0.221533 | 0.303964 | 0.521598 | 0.393153 | 27.12% |
V101 | Easy | 0.079860 | 0.088830 | 0.098709 | 0.095340 | 10.10% |
V102 | Medium | 0.106666 | 0.111855 | 0.134505 | 0.148746 | 4.64% |
V103 | Hard | 0.159576 | 0.187750 | 0.151586 | 0.211350 | 15.01% |
V201 | Easy | 0.074389 | 0.094752 | 0.123188 | 0.099128 | 21.49% |
V202 | Medium | 0.137455 | 0.168498 | 0.169666 | 0.176457 | 18.42% |
V203 | Hard | 0.280010 | 0.286872 | 0.837517 | 0.237462 | 2.39% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Li, J.; Wang, A.; Luo, H.; Li, X.; Yang, Z. A Resilient Method for Visual–Inertial Fusion Based on Covariance Tuning. Sensors 2022, 22, 9836. https://doi.org/10.3390/s22249836
Li K, Li J, Wang A, Luo H, Li X, Yang Z. A Resilient Method for Visual–Inertial Fusion Based on Covariance Tuning. Sensors. 2022; 22(24):9836. https://doi.org/10.3390/s22249836
Chicago/Turabian StyleLi, Kailin, Jiansheng Li, Ancheng Wang, Haolong Luo, Xueqiang Li, and Zidi Yang. 2022. "A Resilient Method for Visual–Inertial Fusion Based on Covariance Tuning" Sensors 22, no. 24: 9836. https://doi.org/10.3390/s22249836
APA StyleLi, K., Li, J., Wang, A., Luo, H., Li, X., & Yang, Z. (2022). A Resilient Method for Visual–Inertial Fusion Based on Covariance Tuning. Sensors, 22(24), 9836. https://doi.org/10.3390/s22249836