Inherent Limitations of Smartphone GNSS Positioning and Effective Methods to Increase the Accuracy Utilizing Dual-Frequency Measurements
Abstract
:1. Introduction
2. Obstacles to Applying Precision Positioning Technique to an Android Smartphone
2.1. Low Quality of Android Smartphones Antenna
2.2. Unstable and Discontinuous Measurements
2.3. Carrier-Phase Is Not Available on All Android Smartphones
3. Strategy for Reliable Accuracy Improvement of Android Smartphone Positioning
3.1. Usage of the L5 Code Measurements
3.2. Enhancing Available L5 Signals by Adding Weighted L1 Signals
3.3. L5 Pseudo-Range Correction Generation
3.4. Code Filtering Using Doppler Measurements
4. Smartphone Positioning Algorithm Implementation and Field Test Results
4.1. Configuration of Field Test
4.2. L1/L5 DGNSS Results
4.3. L1/L5 Doppler-Based Kalman-Filter Results
5. Conclusions
- Using weighted L5 code measurements with less-weighted L1 measurements is effective in reducing positioning errors due to the noise and multipath.
- Feeding L5 PRC after compensating L1 PRC currently in service is efficient way to mitigate the GNSS measurement errors without implementing new infrastructures for L5 service.
- In the case of the filtering method using Doppler measurements, it can be used even in smartphones that do not support carrier-phase measurements. It also has the advantage of not having to detect an ambiguity cycle sip.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Khan, Z. Your Guide to Location Services in Android 12. Available online: https://www.androidauthority.com/android-location-services-3219012/ (accessed on 14 November 2022).
- Merano, M. Tesla FSD “Actual” Smart Summon Is Almost Done. Available online: https://www.teslarati.com/tesla-fsd-actual-smart-summon/ (accessed on 14 November 2022).
- GSARMT Force. Using GNSS Raw Measurements on Android Devices: White Paper. Eur. GNSS Agency 2017, 10, 449581. [Google Scholar] [CrossRef]
- Park, B.; Lee, J.; Kim, Y.; Yun, H.; Kee, C. DGPS Enhancement to GPS NMEA Output Data: DGPS by Correction Projection to Position-Domain. J. Navig. 2013, 66, 249–264. [Google Scholar] [CrossRef] [Green Version]
- Yoon, D.; Kee, C.; Seo, J.; Park, B. Position Accuracy Improvement by Implementing the DGNSS-CP Algorithm in Smartphones. Sensors 2016, 16, 910. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Sun, M.; Zhou, C.; Zhang, P. Precise Point Positioning Using Dual-Frequency GNSS Observations on Smartphone. Sensors 2019, 19, 2189. [Google Scholar] [CrossRef] [Green Version]
- Fortunato, M.; Critchley-Marrows, J.; Siutkowska, M.; Ivanovici, M.; Benedetti, E.; Roberts, W. Enabling High Accuracy Dynamic Applications in Urban Environments Using PPP and RTK on Android Multi-Frequency and Multi-GNSS Smartphones. In Proceedings of the European Navigation Conference, ENC 2019, Warsaw, Poland, 9–12 April 2019; pp. 1–9. [Google Scholar]
- Chen, B.; Gao, C.; Liu, Y.; Sun, P. Real-Time Precise Point Positioning with a Xiaomi MI 8 Android Smartphone. Sensors 2019, 19, 2835. [Google Scholar] [CrossRef] [Green Version]
- Yun, J.; Park, B.; Lim, C.; Yoon, H.; Lee, Y.; Lee, Y. Performance Comparison of L1 and L5 GNSS Measurements Using Android Smartphone. In Proceedings of the ISGNSS 2019 in Conjunction with IPNT Conference, Jeju, Korea, 29 October–1 November 2019; pp. 423–425. [Google Scholar]
- Darugna, F.; Wübbena, J.; Ito, A.; Wübbena, T.; Wübbena, G.; Schmitz, M. RTK and PPP-RTK Using Smartphones: From Short-Baseline to Long-Baseline Applications. In Proceedings of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS+, Miami, FL, USA, 16–20 September 2019. [Google Scholar]
- Gao, R.; Xu, L.; Zhang, B.; Liu, T. Raw GNSS Observations from Android Smartphones: Characteristics and Short-Baseline RTK Positioning Performance. Meas. Sci. Technol. 2021, 32, 084012. [Google Scholar] [CrossRef]
- Park, K.; Seo, J. Single-Antenna-Based GPS Antijamming Method Exploiting Polarization Diversity. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 919–934. [Google Scholar] [CrossRef]
- Lee, Y.; Park, B. Nonlinear Regression-Based GNSS Multipath Modelling in Deep Urban Area. Mathematics 2022, 10, 412. [Google Scholar] [CrossRef]
- Warnant, R.; de Vyvere, L.; Warnant, Q. Positioning with Single and Dual Frequency Smartphones Running Android 7 or Later. In Proceedings of the 31st International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS+, Miami, FL, USA, 24—28 September 2018; pp. 284–303. [Google Scholar]
- Takasu, T. Open-Source Program Package for RTK-GPS. Available online: https://www.rtklib.com/rtklib_reference.htm (accessed on 26 October 2022).
- Gartner Inc. Gartner Says Global Smartphone Sales Grew 6% in 2021. Available online: https://www.gartner.com/en/newsroom/press-releases/2022-03-01-4q21-smartphone-market-share (accessed on 26 October 2022).
- Google Android Developers Raw GNSS Measurements—Android Devices That Support Raw GNSS Measurements. Available online: https://developer.android.com/guide/topics/sensors/gnss?hl=en (accessed on 26 October 2022).
- Leclère, J.; Landry, R., Jr.; Botteron, C. Comparison of L1 and L5 Bands GNSS Signals Acquisition. Sensors 2018, 18, 2779. [Google Scholar] [CrossRef] [Green Version]
- Circiu, M.; Felux, M.; Thölert, S.; Antreich, F.; Vergara, M.; Sgammini, M.; Enneking, C.; Pullen, S. Evaluation of GPS L5 and Galileo E1 and E5a Performance for Future Multi Frequency and Multi Constellation GBAS. In Proceedings of the Institute of Navigation International Technical Meeting 2015 (ITM 2015), Dana Point, CA, USA, 26–28 January 2015. [Google Scholar]
- NOAA GPS.Gov. Available online: https://www.gps.gov/systems/gps/space/ (accessed on 26 October 2022).
- Tay, S.; Marais, J. Weighting Models for GPS Pseudorange Observations for Land Transportation in Urban Canyons. In Proceedings of the 6th European Workshop on GNSS Signals and Signal Processing, Noordwijk, The Netherlands, 5–7 December 2012; p. 4. [Google Scholar]
- Yoon, H.; Seok, H.; Lim, C.; Park, B. An Online SBAS Service to Improve Drone Navigation Performance in High-Elevation Masked Areas. Sensors 2020, 20, 3047. [Google Scholar] [CrossRef]
- RTCA DO-229; Minimum Operational Performance Standards for Global Positioning System. Wide Area Augmentation System Airborne Equipment: Washington DC, USA, 2006.
- Park, B.; Kee, C. The Compact Network RTK Method: An Effective Solution to Reduce GNSS Temporal and Spatial Decorrelation Error. J. Navig. 2010, 63, 343–362. [Google Scholar] [CrossRef]
- RTCM Standard 10402.3; Differential GNSS (Global Navigation Satellite Systems) Service: Version 3, RTCM 10403.2 RTCM Paper 104-2013. Radio Technical Commission for Maritime Services: Washington, DC, USA, 2010.
- Kim, J.; Song, J.; No, H.; Han, D.; Kim, D.; Park, B.; Kee, C. Accuracy Improvement of DGPS for Low-Cost Single-Frequency Receiver Using Modified Flächen Korrektur Parameter Correction. ISPRS Int. J. Geoinf. 2017, 6, 222. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Park, B.; Kee, C. Comparative Analysis of Height-Related Multiple Correction Interpolation Methods with Constraints for Network RTK in Mountainous Areas. J. Navig. 2016, 69, 991–1010. [Google Scholar] [CrossRef] [Green Version]
- Wanninger, L.; Heßelbarth, A. GNSS Code and Carrier Phase Observations of a Huawei P30 Smartphone: Quality Assessment and Centimeter-Accurate Positioning. GPS Solut. 2020, 24, 64. [Google Scholar] [CrossRef] [Green Version]
- Lachapelle, G.; Gratton, P.; Horrelt, J.; Lemieux, E.; Broumandan, A. Evaluation of a Low Cost Hand Held Unit with GNSS Raw Data Capability and Comparison with an Android Smartphone. Sensors 2018, 18, 4185. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.; Shin, D.; Park, B.; Kee, C.; Seo, S.; Park, J.; Cho, A. L1 SFMC SBAS System to Improve the Position Accuracy of Android Device. In Proceedings of the 31st International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS+, Miami, FL, USA, 24—28 September 2018; pp. 455–481. [Google Scholar]
- Park, B.; Kim, J.; Kee, C.; Cleveland, A.; Parsons, M.; Wolfe, D.; Kalafus, R. RRC Unnecessary for DGPS Messages. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 1149–1160. [Google Scholar] [CrossRef]
- Kee, C.; Park, B.; Kim, J.; Cleveland, A.; Parsons, M.; Wolfe, D. A Guideline to Establish DGPS Reference Station Requirements. J. Navig. 2008, 61, 99–114. [Google Scholar] [CrossRef]
- Park, B.; Lim, C.; Wang, J.; Morton, Y.T.J. Horizontal Drift Velocity and Dimensions of Ionospheric Irregularities Using ROT from a GNSS Receiver Array. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Park, B.; Sohn, K.; Kee, C. Optimal Hatch Filter with an Adaptive Smoothing Window Width. J. Navig. 2008, 61, 435–454. [Google Scholar] [CrossRef]
- Park, B.; Lim, C.; Yun, Y.; Kim, E.; Kee, C. Optimal Divergence-Free Hatch Filter for GNSS Single-Frequency Measurement. Sensors 2017, 17, 448. [Google Scholar] [CrossRef]
- Zhou, F.; Dong, D.; Li, P.; Li, X.; Schuh, H. Influence of Stochastic Modeling for Inter-System Biases on Multi-GNSS Undifferenced and Uncombined Precise Point Positioning. GPS Solut. 2019, 23, 59. [Google Scholar] [CrossRef]
PRN | Signal Type | SNR [dB-Hz] | Noise Level [m] | |
---|---|---|---|---|
MEAN | RMS | 95% | ||
GPS 1 | Live | 37.8412 | 2.5963 | 5.0824 |
Repeater | 44.9657 | 1.3853 | 2.6775 | |
GPS 8 | Live | 33.1333 | 4.7425 | 9.2270 |
Repeater | 48.9788 | 0.8384 | 1.6925 | |
GPS 27 | Live | 32.9258 | 6.8558 | 13.3884 |
Repeater | 41.7745 | 2.0198 | 3.9691 | |
GPS 30 | Live | 37.0858 | 6.2621 | 14.0582 |
Repeater | 45.8212 | 1.0534 | 2.0153 |
Vendor | 2021 Units (Thousands of Units) | 2021 Market Share (%) |
---|---|---|
Samsung | 272,327.5 | 19.0% |
Apple | 239,239.1 | 16.7% |
Xiaomi | 189,305.4 | 13.2% |
OPPO | 138,242.1 | 9.6% |
Vivo | 136,011.3 | 9.5% |
Others | 458,733.9 | 32.0% |
Total | 1,433,859.4 | 100.0% |
Model | Android Version | ADR (Carrier-Phase) | L5 Frequency | Global System |
---|---|---|---|---|
Samsung Galaxy S20/S21 (Snapdragon) | 12.0 | No | Yes | GPS, GLO, GAL, BDS, QZS |
Xiaomi Mi9 | 9.0 | No | Yes | GPS, GLO, GAL, BDS, QZS |
Samsung Galaxy Note 10 | 9.0 | No | Yes | GPS, GLO, GAL |
LG G8 ThinQ | 9.0 | No | Yes | GPS, GLO, GAL |
One Plus 7 | 9.0 | No | Yes | GPS, GLO, GAL |
Pixel 3 | 9.0 | No | Yes | GPS, GLO, GAL, BDS |
Results | MAX [m] | STD [m] | RMS [m] | 95% [m] | |
---|---|---|---|---|---|
GPS 30 | L1 Frequency | 13.5913 | 3.3551 | 3.3532 | 6.4155 |
L5 Frequency | 5.4317 | 1.5012 | 1.5004 | 2.9514 | |
GAL 13 | L1 Frequency | 15.0005 | 3.4839 | 3.4829 | 6.6878 |
L5 Frequency | 4.7303 | 1.4258 | 1.4254 | 2.9438 |
Positioning Results | MEAN [m] | STD [m] | RMS [m] | 95% [m] | |
---|---|---|---|---|---|
L1 GPS + GAL | Horizontal | 1.7001 | 4.4629 | 4.7750 | 9.3116 |
Vertical | 5.0637 | 8.3905 | 9.7988 | 19.0114 | |
L1 DGNSS | Horizontal | 0.2916 | 4.3820 | 4.3909 | 8.6137 |
Vertical | 1.0586 | 8.0881 | 8.1558 | 15.8754 | |
L1/L5 GPS + GAL | Horizontal | 0.7607 | 1.4872 | 1.6703 | 3.3183 |
Vertical | 4.6150 | 3.9226 | 6.0564 | 11.1689 | |
L1/L5 DGNSS | Horizontal | 0.2991 | 1.4023 | 1.4336 | 2.7209 |
Vertical | 1.2965 | 3.1716 | 3.4259 | 6.8974 |
Positioning Results | MEAN [m] | STD [m] | RMS [m] | 95% [m] | |
---|---|---|---|---|---|
L1 DGNSS | Horizontal | 0.2916 | 4.3820 | 4.3909 | 8.6137 |
Vertical | 1.0586 | 8.0881 | 8.1558 | 15.8754 | |
L1/L5 DGNSS | Horizontal | 0.2991 | 1.4023 | 1.4336 | 2.7209 |
Vertical | 1.2965 | 3.1716 | 3.4259 | 6.8974 | |
L1/L5 KF | Horizontal | 0.2449 | 1.1304 | 1.1564 | 2.3188 |
Vertical | 1.2906 | 1.9074 | 2.3028 | 4.1931 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, J.; Lim, C.; Park, B. Inherent Limitations of Smartphone GNSS Positioning and Effective Methods to Increase the Accuracy Utilizing Dual-Frequency Measurements. Sensors 2022, 22, 9879. https://doi.org/10.3390/s22249879
Yun J, Lim C, Park B. Inherent Limitations of Smartphone GNSS Positioning and Effective Methods to Increase the Accuracy Utilizing Dual-Frequency Measurements. Sensors. 2022; 22(24):9879. https://doi.org/10.3390/s22249879
Chicago/Turabian StyleYun, Jeonghyeon, Cheolsoon Lim, and Byungwoon Park. 2022. "Inherent Limitations of Smartphone GNSS Positioning and Effective Methods to Increase the Accuracy Utilizing Dual-Frequency Measurements" Sensors 22, no. 24: 9879. https://doi.org/10.3390/s22249879
APA StyleYun, J., Lim, C., & Park, B. (2022). Inherent Limitations of Smartphone GNSS Positioning and Effective Methods to Increase the Accuracy Utilizing Dual-Frequency Measurements. Sensors, 22(24), 9879. https://doi.org/10.3390/s22249879