Kinematic Effect on the Navicular Bone with the Use of Rearfoot Varus Wedge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design, Sample Size, and Subjects
2.2. Measurement Procedures, Instruments, and Variables
2.3. Materials
2.4. Variables
2.5. Statistical Methods
3. Results
3.1. Intra-Class Correlation Coefficients, Standard Error of Measurement, and Minimal Change Detectable
3.2. The Navicular Sensor Degrees of Motion
3.3. The Calcaneus Sensor Degrees of Motion
4. Discussion
4.1. Limitations
4.2. Future Lines of Investigation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shibuya, N.; Jupiter, D.C.; Ciliberti, L.J.; VanBuren, V.; La Fontaine, J. Characteristics of adult flatfoot in the United States. J. Foot Ankle Surg. 2010, 49, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Sarrafian, S.K. Anatomy of the Foot and Ankle: Descriptive, Topographic, Functional, 3rd ed.; J.B. Lippincott Company: Philadelphia, PA, USA, 1993. [Google Scholar]
- Newman, P.; Witchalls, J.; Waddington, G.; Adams, R. Risk factors associated with medial tibial stress syndrome in runners: A systematic review and meta-analysis. Open Access J. Sports Med. 2013, 4, 229. [Google Scholar] [CrossRef] [Green Version]
- Boling, M.C.; Padua, D.A.; Marshall, S.W.; Guskiewicz, K.; Pyne, S.; Beutler, A. A prospective investigation of biomechanical risk factors for patellofemoral pain syndrome: The Joint Undertaking to Monitor and Prevent ACL Injury (JUMP-ACL) cohort. Am. J. Sports Med. 2009, 37, 2108–2116. [Google Scholar] [CrossRef] [Green Version]
- Kamiya, T.; Uchiyama, E.; Watanabe, K.; Suzuki, D.; Fujimiya, M.; Yamashita, T. Dynamic effect of the tibialis posterior muscle on the arch of the foot during cyclic axial loading. Clin. Biomech. 2012, 27, 962–966. [Google Scholar] [CrossRef]
- Pohl, M.B.; Hamill, J.; Davis, I.S. Biomechanical and anatomic factors associated with a history of plantar fasciitis in female runners. Clin. J. Sport Med. 2009, 19, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Mills, K.; Blanch, P.; Chapman, A.R.; McPoil, T.G.; Vicenzino, B. Foot orthoses and gait: A systematic review and meta-analysis of literature pertaining to potential mechanisms. Br. J. Sports Med. 2010, 44, 1035–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nester, C.J.; Hutchins, S.; Bowker, P. Effect of foot orthoses on rearfoot complex kinematics during walking gait. Foot Ankle Int. 2001, 22, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, R.; Laxto, P.; Thuesen, A.H.; Richards, B.; Liu, A.; Aran-Ais, F.; Montiel-Parreno, E.; Nester, C.J. Development and evaluation of prefabricated antipronation foot orthosis. J. Rehabil. Res. Dev. 2014, 50, 1332–1342. [Google Scholar] [CrossRef] [PubMed]
- McCulloch, M.U.; Brunt, D.; Vander Linden, D. The effect of foot orthotics and gait velocity on lower limb kinematics and temporal events of stance. J. Orthop. Sports Phys. Ther. 1993, 17, 2–39. [Google Scholar] [CrossRef] [Green Version]
- Hart, H.F.; Crossley, K.M.; Bonacci, J.; Ackland, D.C.; Pandy, M.G.; Collins, N.J. Immediate effects of foot orthoses on gait biomechanics in individuals with persistent patellofemoral pain. Gait Posture 2020, 77, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.M.; Middleton, K.J.; Hart, H.F.; Menz, H.B.; Crossley, K.M.; Munteanu, S.E.; Collins, N.J. Immediate effects of foot orthoses on lower limb biomechanics, pain, and confidence in individuals with patellofemoral osteoarthritis. Gait Posture 2020, 76, 51–57. [Google Scholar] [CrossRef]
- Naderi, A.; Degens, H.; Sakinepoor, A. Arch-support foot-orthoses normalize dynamic in-shoe foot pressure distribution in medial tibial stress syndrome. Eur. J. Sport Sci. 2019, 19, 247–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, R.J.; Davis, I.M.C.; Laughton, C.M. Dual-Function Foot Orthosis: Effect on Shock and Control of Rearfoot Motion. Foot Ankle Int. 2003, 24, 410–414. [Google Scholar] [CrossRef] [PubMed]
- Ferber, R.; Davis, I.M.C.; Williams, D.S. Effect of foot orthotics on rearfoot and tibia joint coupling patterns and variability. J. Biomech. 2005, 38, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Boldt, A.R.; Willson, J.D.; Barrios, J.A. Effects of Medially Wedged Foot Orthoses on Knee and Hip Joint Running Mechanics in Females with and Without Patellofemoral Pain Syndrome. J. Appl. Biomech. 2013, 29, 68–77. [Google Scholar] [CrossRef]
- Nester, C.J. Effect of Orthoses on the kinematics and kinetics of normal walking gait. Gait Posture 2003, 17, 180–187. [Google Scholar] [CrossRef]
- Sweeney, D.; Nester, C.J.; Preece, S.; Mickle, K.J. Effect of antipronation foot orthosis geometry on compression of heel and arch soft tissues. J. Rehabil. Res. Dev. 2015, 52, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Nigg, B.M.; Khan, A.; Fisher, V.; Stefanyshyn, D. Effect of shoe insert construction on foot and leg movement. Med. Sci. Sports Exerc. 1998, 30, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Toda, Y.; Segal, N. Usefulness of an insole with subtalar strapping for analgesia in patients with medial compartment osteoarthritis of the knee. Arthritis Care Res. 2002, 47, 468–473. [Google Scholar] [CrossRef]
- Blackwood, C. The Midtarsal Joint Locking Mechanism. Foot Ankle Int. 2005, 26, 1074–1080. [Google Scholar] [CrossRef]
- Sánchez-Gómez, R.; Becerro de Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Calvo-Lobo, C.; Romero-Morales, C.; Martínez-Jiménez, E.M.; Palomo-López, P.; López-López, D. Heel Height as an Etiology of Hallux Abductus Valgus Development: An electromagnetic Static and Dynamic First Metatarsophalangeal Joint Study. Sensors 2019, 19, 1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corwall, M.W.; McPoil, T.G. Relative movement of the navicular bone during normal walking. Foot Ankle Int. 1999, 20, 507–512. [Google Scholar] [CrossRef]
- Corwall, M.W.; McPoil, T.G. Motion of the Calcaneus, Navicular, and First Metatarsal During the Stance Phase of Walking. J. Am. Podiatr. Med. Assoc. 2002, 92, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Redmond, A.C.; Crosbie, J.; Ouvrier, R.A. Development and validation of a novel rating system for scoring standing foot posture: The Foot Posture Index. Clin. Biomech. 2006, 21, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.F.; Connolly, D.A.J.; Beynnon, B.D. Risk factors for lower extremity injury: A review of the literature. Br. J. Sports Med. 2003, 37, 13–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corwall, M.W.; McPoil, T.G. Classification of Frontal Plane Rearfoot Motion Patterns During the Stance Phase of Walking. J. Am. Podiatr. Med. Assoc. 2009, 99, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.J.; Lee, S.C.; Chang, C.C.; Liu, T.H.; Shiang, T.Y.; Hsu, W.C. Modulations of Foot and Ankle Frontal Kinematics for Breaking and Propulsive Movement Characteristics during Side-Step Cutting with Varying Midsole Thicknesses. Appl. Bionics Biomech. 2018, 2018, 9171502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murley, G.S.; Bird, A.R. The effect of three levels of foot orthotic wedging on the surface electromyographic activity of selected lower limb muscles during gait. Clin. Biomech. 2006, 21, 1074–1080. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.Y.; Bok, S.K.; Kim, B.O.; Park, I.S. The effects of talus control foot orthoses in children with flexible flatfoot. J. Am. Podiatr. Med. Assoc. 2017, 107, 46–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Root, M.L.; Orien, W.P.; Weed, J.H. Normal and Abnormal Function of the Foot; Clinical Biomechanics Corp.: Los Angeles, CA, USA, 1977. [Google Scholar]
- Scherer, P.R.; Sanders, J.; Eldredg, D. Effect of Functional Foot Orthoses on First Metatarsophalangeal Joint Dorsiflexion in Stance and Gait. J. Am. Podiatr. Med. Assoc. 2006, 96, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.F.; Wen, Y.K.; Chen, W.Y. Application of wedged foot orthosis effectively reduces pain in runners with pronated foot: A randomized clinical study. Clin. Rehabil. 2011, 25, 913–923. [Google Scholar] [CrossRef] [PubMed]
- Dayakidis, M.K.; Boudolos, K. Ground reaction force data in functional ankle instability during two cutting movements. Clin. Biomech. 2006, 21, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Branthwaite , H.R.; Payton, C.J.; Chockalingam, N. The effect of simple insoles on three-dimensional foot motion during normal walking. Clin. Biomech. 2004, 19, 972–977. [Google Scholar] [CrossRef]
- Lee, H.J.; Lim, K.B.; Yoo, J.H.; Yoon, S.W. Effect of Custom-Molded Foot Orthoses on Foot Pain and Balance in Children With Symptomatic Flexible Flat Feet. Ann. Rehabil. Med. 2015, 39, 905–913. [Google Scholar] [CrossRef] [PubMed]
Navicular | ||
---|---|---|
Medial—lateral axis (X): | NAV-DF | NAV-PF |
Anterior—posterior axis(Y): | NAV-VR | NAV-VL |
Dorsal—plantar axis(Z): | NAV-ADD | NAV-ABD |
Calcaneus | ||
Medial—lateral axis (X): | CAL-DF | CAL-PF |
Anterior—posterior axis(Y): | CAL-VR | CAL-VL |
Dorsal—plantar axis(Z): | CAL-ADD | CAL-ABD |
Variable | n = 60 Mean ± SD (95% CI) |
---|---|
Age (years) | 29.52 ± 9.99 (26.99–32.05) |
FPI (scores) | 1.62 ± 1.36 (1.27–1.96) |
Weight (kg) | 66.92 ± 14.57 (63.23–70.60) |
Height (cm) | 167.67 ± 12.63 (164.47–170.08) |
BAR | RVW4 | RVW7 | RVW10 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | SD | ICC | SEM | MDC | SD | ICC | SEM | MDC | SD | ICC | SEM | MDC | SD | ICC | SEM | MDC |
(95% CI) | (95% CI) | (95% CI) | (95% CI) | |||||||||||||
NAV-ADD | 0.779 | 0.831 | 0.320 | 0.887 | 1.741 | 0.984 | 0.222 | 0.616 | 2.377 | 0.988 | 0.173 | 0.479 | 2.808 | 0.970 | 0.481 | 1.335 |
(0.740–0.894) | (0.975–0.990) | (0.981–0.992) | (0.955–0.981) | |||||||||||||
NAV-ABD | 1.700 | 0.850 | 0.659 | 1.826 | 3.244 | 0.989 | 0.347 | 0.964 | 3.582 | 0.993 | 0.193 | 0.534 | 4.046 | 0.991 | 0.375 | 1.039 |
(0.770–0.905) | (0.982–0.993) | (0.989–0.996) | (0.987–0.995) | |||||||||||||
NAV-PF | 1.340 | 0.841 | 0.535 | 1.483 | 3.202 | 0.989 | 0.334 | 0.928 | 4.219 | 0.996 | 0.217 | 0.602 | 4.444 | 0.977 | 0.671 | 1.861 |
(0.754–0.900) | (0.983–0.993) | (0.994–0.998) | (0.965–0.986) | |||||||||||||
NAV-DF | 0.458 | 0.979 | 0.066 | 0.184 | 2.490 | 0.988 | 0.276 | 0.767 | 2.918 | 0.993 | 0.118 | 0.326 | 2.796 | 0.985 | 0.341 | 0.946 |
(0.968–0.987) | (0.981–0.992) | (0.989–0.996) | (0.977–0.991) | |||||||||||||
NAV-VR | 0.947 | 0.985 | 0.115 | 0.320 | 1.321 | 0.990 | 0.133 | 0.370 | 2.408 | 0.989 | 0.144 | 0.399 | 2.035 | 0.995 | 0.139 | 0.386 |
(0.977–0.991) | (0.984–0.994) | (0.982–0.993) | (0.993–0.997) | |||||||||||||
NAV-VL | 0.385 | 0.831 | 0.158 | 0.439 | 0.768 | 0.983 | 0.100 | 0.279 | 1.153 | 0.983 | 0.086 | 0.240 | 1.543 | 0.989 | 0.159 | 0.441 |
(0.741–0.893) | (0.974–0.989) | (0.974–0.989) | (0.984–0.993) |
BAR | RVW4 | RVW7 | RVW10 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | SD | ICC | SEM | MDC | SD | ICC | SEM | MDC | SD | ICC | SEM | MDC | SD | ICC (95% CI) | SEM | MDC |
(95% CI) | (95% CI) | (95% CI) | ||||||||||||||
CALC-ADD | 0.307 | 0.967 | 0.056 | 0.155 | 1.787 | 0.990 | 0.181 | 0.501 | 1.666 | 0.971 | 0.281 | 0.780 | 2.948 | 0.996 | 0.185 | 0.513 |
(0.948–0.979) | (0.984–0.994) | (0.956–0.982) | (0.994–0.998) | |||||||||||||
CALC-ABD | 1.062 | 0.862 | 0.394 | 1.093 | 1.817 | 0.981 | 0.250 | 0.692 | 1.317 | 0.995 | 0.096 | 0.265 | 3.090 | 0.996 | 0.194 | 0.537 |
(0.788–0.913) | (0.971–0.988) | (0.992–0.997) | (0.994–0.998) | |||||||||||||
CALC-FP | 0.900 | 0.883 | 0.307 | 0.852 | 2.387 | 0.979 | 0.349 | 0.968 | 2.027 | 0.983 | 0.264 | 0.733 | 3.592 | 0.996 | 0.231 | 0.640 |
(0.821–0.926) | (0.967–0.987) | (0.974–0.989) | (0.994–0.998) | |||||||||||||
CALC-FD | 0.796 | 0.891 | 0.263 | 0.729 | 2.235 | 0.998 | 0.106 | 0.294 | 0.793 | 0.986 | 0.094 | 0.260 | 1.933 | 0.995 | 0.143 | 0.396 |
(0.833–0.931) | (0.997–0.999) | (0.979–0.991) | (0.992–0.997) | |||||||||||||
CALC-VR | 0.484 | 0.896 | 0.156 | 0.433 | 1.691 | 0.991 | 0.161 | 0.446 | 1.736 | 0.982 | 0.235 | 0.650 | 2.439 | 0.974 | 0.390 | 1.080 |
(0.840–0.934) | (0.984–0.995) | (0.972–0.989) | (0.961–0.984) | |||||||||||||
CALC-VL | 0.900 | 0.978 | 0.135 | 0.374 | 1.499 | 0.989 | 0.156 | 0.431 | 1.034 | 0.998 | 0.045 | 0.124 | 1.987 | 0.997 | 0.103 | 0.286 |
(0.965–0.986) | (0.991–0.996) | (0.997–0.999) | (0.996–0.998) |
BAR | RVW 4 mm | RVWS 7 mm | RVW 10 mm | p-Value BAR | p-Value BAR | p-Value BAR | p-Value RVW 4 mm | p-Value RVW 4 mm | p-Value RVW 7 mm | |
---|---|---|---|---|---|---|---|---|---|---|
Variables | mean (degrees) | mean (degrees) | mean (degrees) | mean (degrees) | vs | vs | vs | vs | vs | vs |
± SD (95% CI) | ± SD (95% CI) | ± SD (95% CI) | ± SD (95% CI) | RVW 4 mm | RVW 7 mm | RVW 10 mm | RVW 7 mm | RVW 10 mm | RVW 10 mm | |
NAV-ADD | 0.51 ± 0.68 | 1.17 ± 1.74 | 1.57 ± 2.40 | 1.96 ± 2.80 | ||||||
NAV-ABD | (0.33–0.68) | (0.73–1.61) | (0.96–2.17) | (1.25–2.66) | <0.05 * | <0.05 * | <0.05 * | 0.147 | <0.001 ** | <0.05 * |
0.66 ± 1.7 | 1.92 ± 3.24 | 2.30 ± 3.60 | 2.64 ± 4.04 | |||||||
(0.30–1.05) | (1.10–2.74) | (1.40–3.22) | (1.60–3.70) | <0.05 * | <0.05 * | <0.05 * | 0.17 | 0.11 | 0.13 | |
NAV-FP | 0.68 ± 1.34 | 2.27 ± 3.20 | 3.46 ± 4.21 | 3.93 ± 4.44 | ||||||
(0.38–0.98) | (1.45–3.09) | (2.37–4.54) | (2.81–5.06) | <0.05 * | <0.001 ** | <0.001 ** | <0.001 ** | <0.001 ** | <0.05 * | |
NAV-FD | 0.31 ± 0.46 | 1.30 ± 2.49 | 1.40 ± 2.92 | 1.31 ± 2.80 | ||||||
(0.19–0.42) | (0.67–1.93) | (0.65–2.14) | (0.60–2.02) | 0.069 | 0.43 | 1.16 | 0.80 | 1.51 | 2.57 | |
NAV-VR | 0.35 ± 0.95 | 0.86 ± 1.32 | 1.35 ± 2.41 | 1.30 ± 2.03 | ||||||
(0.11–0.60) | (0.52–1.20) | (0.73–1.97) | (0.77–1.81) | <0.001 ** | <0.001 ** | <0.001 ** | 0.17 | <0.05 * | 0.22 | |
NAV-VL | 0,.27 ± 0.39 | 0.49 ± 0.77 | 0.66 ± 1.20 | 0.81 ± 1.54 | ||||||
(0.18–0.35) | (0.29–0.68) | (0.37–0.96) | (0.41–1.20) | 0.26 | 0.18 | <0.05 * | 0.25 | 0.50 | 1.08 |
BAR | RVW 4 mm | RVWS 7 mm | RVW 10 mm | p-Value BAR | p-Value BAR | p-Value BAR | p-Value RVW 4 mm | p-Value RVW 4 mm | p-Value RVW 7 mm | |
---|---|---|---|---|---|---|---|---|---|---|
Variable | mean (degrees) | mean (degrees) | mean (degrees) | mean (degrees) | vs | vs | vs | vs | vs | vs |
± SD (95% CI) | ± SD (95% CI) | ± SD (95% CI) | ± SD (95% CI) | RVW 4 mm | RVW 7 mm | RVW 10 mm | RVW 7 mm | RVW 10 mm | RVW 10 mm | |
CALC-ADD | 0.17 ± 0.68 | 1.19 ± 1.79 | 1.67 ± 2.40 | 1.83 ± 2.94 | ||||||
(0.10–0.24) | (0.74–1.7) | (1.07–2.3) | (1.10–2.60) | <0.001 ** | <0.001 ** | <0.05 * | <0.05 * | 0.11 | 0.6 | |
CALC-ABD | 0.55 ± 1.06 | 1.15 ± 1.81 | 1.32 ± 2.14 | 2.13 ± 3.09 | ||||||
(0.30–0.79) | (0.70–1.62) | (0.77–1.87) | (1.34–2.93) | 0.18 | 0.3 | <0.05 * | 1.128 | <0.05 * | <0.001 ** | |
CALC-FP | 0.35 ± 0.90 | 1.77 ± 2.39 | 2.03 ± 2.50 | 3.00 ± 3.60 | ||||||
(0.15–0.57) | (1.17–2.40) | (1.40–2.70) | (2.07–3.92) | <0.001 ** | <0.001 ** | <0.001 ** | 0.189 | <0.001 ** | <0.001 ** | |
CALC-FD | 0.37 ± 0.79 | 0.85 ± 2.23 | 0.79 ± 1.40 | 0.95 ± 1.93 | ||||||
(0.18–0.56) | (0.27–1.43) | (0.44–1.15) | (0.45–1.45) | 1 | 0.87 | 1.67 | 1.05 | 0.89 | 0.78 | |
CALC-VR | 0.20 ± 0.49 | 1.33 ± 1.70 | 1.74 ± 2.10 | 2.11 ± 2.43 | ||||||
(0.09–0.31) | (0.90–1.77) | (1.20–2.27) | (1.50–2.72) | <0.001 ** | <0.001 ** | <0.001 ** | 0.054 | <0.001 ** | 0.07 | |
CALC-VL | 0.40 ± 0.90 | 0.92 ± 1.50 | 1.03 ± 1.82 | 1.02 ± 1.98 | ||||||
(0.17–0.63) | (0.39–1.07) | (0.56–1.50) | (0.50–1.52) | 1.07 | 0.86 | 0.48 | <0.05 * | 0.46 | 2.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez Carrión, Á.; de los Ángeles Atín Arratibel, M.; Morales Lozano, M.R.; Martínez Sebastián, C.; de la Cruz Torres, B.; Sánchez-Gómez, R. Kinematic Effect on the Navicular Bone with the Use of Rearfoot Varus Wedge. Sensors 2022, 22, 815. https://doi.org/10.3390/s22030815
Gómez Carrión Á, de los Ángeles Atín Arratibel M, Morales Lozano MR, Martínez Sebastián C, de la Cruz Torres B, Sánchez-Gómez R. Kinematic Effect on the Navicular Bone with the Use of Rearfoot Varus Wedge. Sensors. 2022; 22(3):815. https://doi.org/10.3390/s22030815
Chicago/Turabian StyleGómez Carrión, Álvaro, Maria de los Ángeles Atín Arratibel, Maria Rosario Morales Lozano, Carlos Martínez Sebastián, Blanca de la Cruz Torres, and Rubén Sánchez-Gómez. 2022. "Kinematic Effect on the Navicular Bone with the Use of Rearfoot Varus Wedge" Sensors 22, no. 3: 815. https://doi.org/10.3390/s22030815
APA StyleGómez Carrión, Á., de los Ángeles Atín Arratibel, M., Morales Lozano, M. R., Martínez Sebastián, C., de la Cruz Torres, B., & Sánchez-Gómez, R. (2022). Kinematic Effect on the Navicular Bone with the Use of Rearfoot Varus Wedge. Sensors, 22(3), 815. https://doi.org/10.3390/s22030815