Vehicle Localization Using Doppler Shift and Time of Arrival Measurements in a Tunnel Environment
Abstract
:1. Introduction
1.1. Propagation in Tunnel Environments
1.2. Localization In-Tunnel Environments
1.3. Contribution
2. Problem Formulation and Proposed Solution
Vehicle Localization Algorithm Assumptions and Workflow
- The vehicle is moving in the defined lanes and has the OBU installed.
- When it enters the tunnel, there is no GNSS coverage, and the only communication technology in place is the technology provided by the RSU.
- The position of the RSU, its IP address, together with the ID, are continuously updated in the network. The network broadcasts this information to all vehicles driving in the tunnel’s surrounding area using DENM notifications, indicating the tunnel’s presence on the road.
- The received data by the application is authentic and includes security-related requirements.
- 1.
- If the OBU system receives a DEMN notification pointing towards a tunnel environment, the OBU system initiates the tunnel localization application, which starts to collect and analyze the input data.
- 2.
- The tunnel localization application extracts the IP address, the ID, and the geo-location of the RSU placed within the tunnel in which it will have to hand over and continue V2I communication.
- 3.
- While the vehicle moves forward into the area covered by the network or RSU used in the tunnel environment, the vehicle requests to join the network covered by the RSU placed within the tunnel, which is assumed to cover the area at the entering zone of the tunnel.
- 4.
- The vehicle sends a CAM notification to share its ID and the initialization of the in-tunnel localization algorithm.
- 5.
- After successfully joining this network, the vehicle uses the localization application timer. For every timestamp defined on the application, it obtains the RF signals parameters and its current geo-location provided by GNSS.
- 6.
- 7.
- The current position of the vehicle is saved in the algorithm database.
- 8.
- In the next received frame from the RSU (depending on the input frequency), the vehicle receives a signal from which it extracts the RF channel information and measures the required RF parameters explained in Section 3. The RF parameters together with the initial position are used for position estimation, and this new position is saved again in the database.
- 9.
- This algorithm continues to estimate and update the position of the vehicle until the vehicle arrives at the end of the tunnel and moves into the area outside the tunnel.
- 10.
- As soon as the vehicle passes the indoor tunnel environment and can rely on the GNSS coverage for positioning, the status of the event changes, the localization algorithm stops the timer and estimations, as it can send a CAM message notifying the RSU that the vehicle passed the tunnel and the event is canceled.
Algorithm 1: Vehicle localization algorithm workflow used in tunnels environments. |
3. Measurements and Methodology
3.1. Measurement Setup and Scenario
3.2. Rf Propagation Analysis in Tunnels
3.2.1. Doppler Shift
3.2.2. Time of Arrival, TOA
4. Extended Kalman Filter-Based In-Tunnel Tracking
5. Kalman Filter-Based In-Tunnel Tracking
6. Results and Analysis
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Widmann, D.; Balac, K.; Taddeo, A.V.; Prevostini, M.; Puiatti, A. Characterization of in-tunnel distance measurements for vehicle localization. In Proceedings of the IEEE Wireless Communications and Networking Conference, WCNC, Shanghai, China, 7–10 April 2013; pp. 2311–2316. [Google Scholar] [CrossRef]
- Halili, R.; Weyn, M.; Berkvens, R. Comparing Localization Performance of IEEE 802.11p and LTE-V V2I Communications. Sensors 2021, 21, 2031. [Google Scholar] [CrossRef] [PubMed]
- Dudley, D.G.; Lienard, M.; Mahmoud, S.F.; Degauque, P. Wireless propagation in tunnels. IEEE Antennas Propag. Mag. 2007, 49, 11–26. [Google Scholar] [CrossRef]
- Rizzo, C.; Lera, F.; Villarroel, J.L. 3-D Fadings Structure Analysis in Straight Tunnels Toward Communication, Localization, and Navigation. IEEE Trans. Antennas Propag. 2019, 67, 6123–6137. [Google Scholar] [CrossRef]
- Bernado, L.; Roma, A.; Paier, A.; Zemen, T.; Czink, N.; Karedal, J.; Thiel, A.; Tufvesson, F.; Molisch, A.F.; Mecklenbrauker, C.F. In-Tunnel Vehicular Radio Channel Characterization. In Proceedings of the 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring), Budapest, Hungary, 15–18 May 2011; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Boksiner, J.; Chrysanthos, C.; Lee, J.; Billah, M.; Bocskor, T.; Barton, D.; Breakall, J. Modeling of radiowave propagation in tunnels. In Proceedings of the MILCOM 2012–2012 IEEE Military Communications Conference, Orlando, FL, USA, 29 October–1 November 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Kjeldsen, E.; Hopkins, M. An Experimental Look at Rf Propagation in Narrow Tunnels. In Proceedings of the MILCOM 2006–2006 IEEE Military Communications Conference, Washington, DC, USA, 23–25 October 2006; pp. 1–7. [Google Scholar] [CrossRef]
- Masson, E.; Cocheril, Y.; Combeau, P.; Aveneau, L.; Berbineau, M.; Vauzelle, R.; Fayt, E. Radio wave propagation in curved rectangular tunnels at 5.8 GHz for metro applications. In Proceedings of the 2011 11th International Conference on ITS Telecommunications, St. Petersburg, Russia, 23–25 August 2011; pp. 81–85. [Google Scholar] [CrossRef]
- Hrovat, A.; Kandus, G.; Javornik, T. A Survey of Radio Propagation Modeling for Tunnels. IEEE Commun. Surv. Tutor. 2014, 16, 658–669. [Google Scholar] [CrossRef]
- Yusuf, M.; Tanghe, E.; Laly, P.; Challita, F.; Lannoo, B.; Halili, R.; Berkvens, R.; Weyn, M.; Martens, L.; Gaillot, D.P.; et al. Experimental Study on the Impact of Antenna Characteristics on Non-Stationary V2I Channel Parameters in Tunnels. IEEE Trans. Veh. Technol. 2020, 69, 12396–12407. [Google Scholar] [CrossRef]
- Lázaro, M.T.; Castellanos, J.A. Localization of probabilistic robot formations in SLAM. In Proceedings of the IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 3179–3184. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, C.; Kumar, V.; Lera, F.; Villarroel, J.L. RF odometry for localization in pipes based on periodic signal fadings. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 4577–4583. [Google Scholar] [CrossRef]
- Rizzo, C.; Lera, F.; Villarroel, J.L. A methodology for localization in tunnels based on periodic RF signal fadings. In Proceedings of the IEEE Military Communications Conference MILCOM, Baltimore, MD, USA, 6–8 October 2014; pp. 317–324. [Google Scholar] [CrossRef]
- Seco, T.; Rizzo, C.; Espelosín, J.; Villarroel, J.L. A Robot Localization System Based on RF Fadings Using Particle Filters inside Pipes. In Proceedings of the 2016 International Conference on Autonomous Robot Systems and Competitions, ICARSC 2016, Bragança, Portugal, 4–6 May 2016; pp. 28–34. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Abe, T.; Sekiguchi, T. Radio wave propagation loss in the VHF to microwave region due to vehicles in tunnels. IEEE Trans. Electromagn. Compat. 1989, 31, 87–91. [Google Scholar] [CrossRef]
- Ling, J.; Wang, L.; Ji, H.; Xie, H.; Ding, J.; Dai, Q. UWB-Based Real-Time Continuous Positioning System in NLOS Tunnel Environment. In Proceedings of the 2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, CyberC 2018, Zhengzhou, China, 18–20 October 2019; pp. 142–146. [Google Scholar] [CrossRef]
- Burgard, W.; Brock, O.; Stachniss, C. Map-Based Precision Vehicle Localization in Urban Environments. In Robotics: Science and Systems III; MIT Press: Cambridge, MA, USA, 2008; pp. 121–128. [Google Scholar]
- Rezaei, S.; Sengupta, R. Kalman Filter-Based Integration of DGPS and Vehicle Sensors for Localization. IEEE Trans. Control Syst. Technol. 2007, 15, 1080–1088. [Google Scholar] [CrossRef] [Green Version]
- Fouque, C.; Bonnifait, P.; Betaille, D. Enhancement of global vehicle localization using navigable road maps and dead-reckoning. In Proceedings of the 2008 IEEE/ION Position, Location and Navigation Symposium, Monterey, CA, USA, 5–8 May 2008; pp. 1286–1291. [Google Scholar] [CrossRef] [Green Version]
- Oguz-Ekim, P.; Ali, K.; Madadi, Z.; Quitin, F.; Tay, W.P. Proof of concept study using DSRC, IMU and map fusion for vehicle localization in GNSS-denied environments. In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; pp. 841–846. [Google Scholar] [CrossRef]
- Zhong, X.; Rabiee, R.; Yan, Y.; Tay, W.P. A particle filter for vehicle tracking with lane level accuracy under GNSS-denied environments. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Parker, R.; Valaee, S. Vehicular Node Localization Using Received-Signal-Strength Indicator. IEEE Trans. Veh. Technol. 2007, 56, 3371–3380. [Google Scholar] [CrossRef] [Green Version]
- De Ponte Müller, F. Survey on Ranging Sensors and Cooperative Techniques for Relative Positioning of Vehicles. Sensors 2017, 17, 271. [Google Scholar] [CrossRef] [Green Version]
- Bregar, K.; Hrovat, A.; Novak, R.; Javornik, T. Channel impulse response based vehicle analysis in tunnels. In Proceedings of the 13th European Conference on Antennas and Propagation, EuCAP 2019, Krakow, Poland, 31 March–5 April 2019; pp. 9–13. [Google Scholar]
- Kenney, J.B. Dedicated Short-Range Communications (DSRC) Standards in the United States. Proc. IEEE 2011, 99, 1162–1182. [Google Scholar] [CrossRef]
- Del Peral-Rosado, J.A.; Barreto-Arboleda, M.A.; Zanier, F.; Seco-Granados, G.; Lopez-Salcedo, J.A. Performance limits of V2I ranging localization with LTE networks. In Proceedings of the 2017 14th Workshop on Positioning, Navigation and Communications, WPNC 2017, Bremen, Germany, 25–26 October 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Del Peral-Rosado, J.A.; Castillo, R.E.I.; Mıguez-Sanchez, J.; Navarro-Gallardo, M.; Garcıa-Molina, J.A.; Lopez-Salcedo, J.A.; Seco-Granados, G.; Zanier, F.; Crisci, M. Performance analysis of hybrid GNSS and LTE Localization in urban scenarios. In Proceedings of the 2016 8th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), Noordwijk, The Netherlands, 14–16 December 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Driusso, M.; Marshall, C.; Sabathy, M.; Knutti, F.; Mathis, H.; Babich, F. Vehicular Position Tracking Using LTE Signals. IEEE Trans. Veh. Technol. 2017, 66, 3376–3391. [Google Scholar] [CrossRef]
- Driusso, M.; Babich, F.; Knutti, F.; Sabathy, M.; Marshall, C. Estimation and tracking of LTE signals time of arrival in a mobile multipath environment. In Proceedings of the 2015 9th International Symposium on Image and Signal Processing and Analysis (ISPA), Zagreb, Croatia, 7–9 September 2015; pp. 276–281. [Google Scholar] [CrossRef]
- Radnosrati, K.; Fritsche, C.; Hendeby, G.; Gunnarsson, F.; Gustafsson, F. Fusion of TOF and TDOA for 3GPP positioning. In Proceedings of the 2016 19th International Conference on Information Fusion (FUSION), Heidelberg, Germany, 5–8 July 2016; pp. 1454–1460. [Google Scholar]
- Mohammadabadi, P.H.; Valaee, S. Cooperative node positioning in vehicular networks using inter-node distance measurements. In Proceedings of the 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), Washington, DC, USA, 2–5 September 2014; pp. 1448–1452. [Google Scholar] [CrossRef]
- Fascista, A.; Ciccarese, G.; Coluccia, A.; Ricci, G. Angle of Arrival-Based Cooperative Positioning for Smart Vehicles. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2880–2892. [Google Scholar] [CrossRef]
- Cruz, S.B.; Abrudan, T.E.; Xiao, Z.; Trigoni, N.; Barros, J. Neighbor-Aided Localization in Vehicular Networks. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2693–2702. [Google Scholar] [CrossRef]
- Godoy, J.; Pérez, J.; Onieva, E.; Villagrá, J.; Milanés, V.; Haber, R. A driverless vehicle demonstration on motorways and in urban environments. Transport 2015, 30, 253–263. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yin, X.; Cai, G.; Wang, G.; Guo, S.; Liang, K. Tunnel vehicle RSSI positioning algorithm based on LMLF Model. In Proceedings of the 2019 4th International Conference on Cloud Computing and Internet of Things, CCIOT 2019, Changchun, China, 6–7 December 2019; pp. 29–32. [Google Scholar] [CrossRef]
- Aernouts, M.; BniLam, N.; Berkvens, R.; Weyn, M. TDAoA: A combination of TDoA and AoA localization with LoRaWAN. Internet Things 2020, 11, 100236. [Google Scholar] [CrossRef]
- Savic, V.; Ferrer-Coll, J.; Angskog, P.; Chilo, J.; Stenumgaard, P.; Larsson, E.G. Measurement analysis and channel modeling for TOA-based ranging in tunnels. IEEE Trans. Wirel. Commun. 2015, 14, 456–467. [Google Scholar] [CrossRef] [Green Version]
- Bnilam, N.; Tanghe, E.; Steckel, J.; Joseph, W.; Weyn, M. ANGLE: ANGular Location Estimation Algorithms. IEEE Access 2020, 8, 14620–14629. [Google Scholar] [CrossRef]
- Artuñedo, A.; Villagra, J.; Godoy, J.; Castillo, M.D.d. Motion Planning Approach Considering Localization Uncertainty. IEEE Trans. Veh. Technol. 2020, 69, 5983–5994. [Google Scholar] [CrossRef]
- Nguyen, D.V.; Nashashibi, F.; Dao, T.K.; Castelli, E. Improving poor GPS area localization for intelligent vehicles. IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Daegu, Korea, 16–18 November 2017; pp. 417–421. [Google Scholar] [CrossRef] [Green Version]
- Amini, A.; Vaghefi, R.M.; de la Garza, J.M.; Buehrer, R.M. Improving GPS-based vehicle positioning for Intelligent Transportation Systems. In Proceedings of the 2014 IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, MI, USA, 8–11 June 2014; pp. 1023–1029. [Google Scholar] [CrossRef]
- IEEE 3GPP, T.R. Technical Specification Group Radio Access Network; Vehicle-To-Everything (V2X) Services Based on LTE; User Equipment (UE) Radio Transmission and Reception. TR 36.786 v14.0.0. 2017. Available online: https://portal.3gpp.org/webapp/meetingCalendar/MeetingDetails.asp?m_id=31939 (accessed on 15 November 2021).
- ETSI ISG ITS, ETSI EN 302 637-2 V1.4.1; Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service; ETSI: Sophia Antipolis, France, 2019; Available online: https://www.etsi.org/deliver/etsi_en/302600_302699/30263702/01.04.01_60/en_30263702v010401p.pdf (accessed on 1 September 2021).
- ETSI ISG ITS, ETSI EN 302 637-3 V1.3.0; Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 3: Specification of Decentralized Environment Notification Basic Service; ETSI: Sophia Antipolis, France, 2018; Available online: https://www.etsi.org/deliver/etsi_en/302600_302699/30263703/01.03.01_60/en_30263703v010301p.pdf (accessed on 1 September 2021).
- Laly, P.; Gaillot, D.P.; Lienard, M.; Degauque, P.; Tanghe, E.; Joseph, W.; Martens, L. Flexible real-time MIMO channel sounder for multidimensional polarimetric parameter estimation. In Proceedings of the 2015 IEEE Conference on Antenna Measurements Applications (CAMA), Chiang Mai, Thailand, 30 November–2 December 2015; pp. 1–3. [Google Scholar] [CrossRef] [Green Version]
- Liénard, M.; Bétrencourt, S.; Degauque, P. Propagation in road tunnels: A statistical analysis of the field distribution and impact of the traffic. Ann. Telecommun./Ann. Telecommun. 2000, 55, 623–631. [Google Scholar] [CrossRef]
- Mahmoud, S.F.; Wait, J.R. Guided electromagnetic waves in a curved rectangular mine tunnel. Radio Sci. 1974, 9, 567–572. [Google Scholar] [CrossRef]
- Emslie, A.; Lagace, R.; Strong, P. Theory of the propagation of UHF radio waves in coal mine tunnels. IEEE Trans. Antennas Propag. 1975, 23, 192–205. [Google Scholar] [CrossRef] [Green Version]
- Matz, G. On non-WSSUS wireless fading channels. IEEE Trans. Wirel. Commun. 2005, 4, 2465–2478. [Google Scholar] [CrossRef]
- Rappaport, T. Wireless Communications: Principles and Practice, 2nd ed.; Prentice Hall Communications Engineering and Emerging Technologies Series; Prentice Hall: Upper Saddle River, NJ, USA, 2002; p. 707. [Google Scholar]
- Xu, B.; Shen, L.; Yan, F.; Zheng, J. Doppler-shifted frequency measurement based positioning for roadside-vehicle communication systems. Wirel. Commun. Mob. Comput. 2011, 11, 866–875. [Google Scholar] [CrossRef]
- De Agostino, M.; Manzino, A.; Marucco, G. Doppler measurement integration for kinematic real-time GPS positioning. Appl. Geomat. 2010, 2, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Mittermaier, T.J.; Siart, U.; Eibert, T.F.; Bonerz, S. Extended Kalman Doppler tracking and model determination for multi-sensor short-range radar. Adv. Radio Sci. 2016, 14, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Kouguchi, N.; Li, Y. Velocity Measurement of Coherent Doppler Sonar Assisted by Frequency Shift, Kalman Filter and Linear Prediction. J. Mar. Sci. Eng. 2021, 9, 109. [Google Scholar] [CrossRef]
- Li, X.; Pahlavan, K. Super-resolution TOA estimation with diversity for indoor geolocation. IEEE Trans. Wirel. Commun. 2004, 3, 224–234. [Google Scholar] [CrossRef]
- Alsindi, N.; Li, X.; Pahlavan, K. Analysis of Time of Arrival Estimation Using Wideband Measurements of Indoor Radio Propagations. IEEE Trans. Instrum. Meas. 2007, 56, 1537–1545. [Google Scholar] [CrossRef]
- Blanco, A.; Ludant, N.; Mateo, P.J.; Shi, Z.; Wang, Y.; Widmer, J. Performance Evaluation of Single Base Station ToA-AoA Localization in an LTE Testbed. In Proceedings of the 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Istanbul, Turkey, 8–11 September 2019; pp. 1–6. [Google Scholar] [CrossRef]
- McDermott, K.; Vaghefi, R.M.; Buehrer, R.M. Cooperative UTDOA Positioning in LTE Cellular Systems. In Proceedings of the 2015 IEEE Globecom Workshops (GC Wkshps), San Diego, CA, USA, 6–10 December 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Benedetto, F.; Giunta, G.; Guzzon, E. Enhanced TOA-based indoor-positioning algorithm for mobile LTE cellular systems. In Proceedings of the 2011 8th Workshop on Positioning, Navigation and Communication, Dresden, Germany, 7–8 April 2011; pp. 137–142. [Google Scholar] [CrossRef]
- Särkkä, S. Bayesian Filtering and Smoothing; Bayesian Filtering and Smoothing, Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Em, A.; Sarvi, M.; Bagloee, S. Using Kalman filter algorithm for short-term traffic flow prediction in a connected vehicle environment. J. Mod. Transp. 2019, 27, 222–232. [Google Scholar] [CrossRef] [Green Version]
- Bensky, A. Wireless Positioning Technologies and Applications, 2nd ed.; Artech House: Norwood, MA, USA, 2016; p. 424. [Google Scholar]
- Wang, J. Stochastic Modeling for Real-Time Kinematic GPS/GLONASS Positioning. Navigation 1999, 46, 297–305. [Google Scholar] [CrossRef]
- Akhlaghi, S.; Zhou, N.; Huang, Z. Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation. In Proceedings of the 2017 IEEE Power Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.; Cheng, Q.; Wang, J. Precise vehicle dynamic heading and pitch angle estimation using time-differenced measurements from a single GNSS antenna. GPS Solut. 2020, 24, 84. [Google Scholar] [CrossRef]
Parameter | Setting |
---|---|
Bandwidth | 80 MHz |
Center frequency | 1.35 GHz |
Tx and Rx polarization | V (omni), V/H (patch) |
Tx and Rx gain | 2 dBi (omni), 7.4 dBi (patch) |
Tx and Rx HPBW (patch) | |
OFDM symbol duration | 81.92 µs |
Minimum snapshot acquisition time | 327.68 µs |
Total recording time per trip | 54 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halili, R.; BniLam, N.; Yusuf, M.; Tanghe, E.; Joseph, W.; Weyn, M.; Berkvens, R. Vehicle Localization Using Doppler Shift and Time of Arrival Measurements in a Tunnel Environment. Sensors 2022, 22, 847. https://doi.org/10.3390/s22030847
Halili R, BniLam N, Yusuf M, Tanghe E, Joseph W, Weyn M, Berkvens R. Vehicle Localization Using Doppler Shift and Time of Arrival Measurements in a Tunnel Environment. Sensors. 2022; 22(3):847. https://doi.org/10.3390/s22030847
Chicago/Turabian StyleHalili, Rreze, Noori BniLam, Marwan Yusuf, Emmeric Tanghe, Wout Joseph, Maarten Weyn, and Rafael Berkvens. 2022. "Vehicle Localization Using Doppler Shift and Time of Arrival Measurements in a Tunnel Environment" Sensors 22, no. 3: 847. https://doi.org/10.3390/s22030847
APA StyleHalili, R., BniLam, N., Yusuf, M., Tanghe, E., Joseph, W., Weyn, M., & Berkvens, R. (2022). Vehicle Localization Using Doppler Shift and Time of Arrival Measurements in a Tunnel Environment. Sensors, 22(3), 847. https://doi.org/10.3390/s22030847