Influence of Turn Cycle Structure on Performance of Elite Alpine Skiers Assessed through an IMU in Different Slalom Course Settings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.2.1. IMU Device and Location
2.2.2. Course Setting
2.2.3. Drone Mission and Surveyed Reference Points
2.3. Data Analysis
2.3.1. Total Time
2.3.2. Criterion for Dividing Turns into Phases
2.3.3. Digital Elevation Model (DEM)
2.3.4. Statistical Analyses
3. Results
4. Discussion and Conclusions
5. Summary and Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Ski Federation (FIS). FIS International Ski Competition Rules ICR. 2020. Available online: https://www.fis-ski.com/en/inside-fis/document-library/alpine-documents#9a7d11be565ad65858070c99 (accessed on 13 April 2021).
- Spörri, J.; Kröll, J.; Schwameder, H.; Müller, E. Turn characteristics of a top world class athlete in giant slalom: A case study assessing current performance prediction concepts. Int. J. Sports Sci. Coach. 2012, 7, 647–659. [Google Scholar] [CrossRef]
- Reid, R.C. A Kinematic and Kinetic Study of Alpine Skiing Technique in Slalom; Norwegian School of Sport Sciences in Oslo: Oslo, Norway, 2010. [Google Scholar]
- Nachbauer, W. Fahrlinie in Torlauf und Riesentorlauf. Leistungssport 1987, 6, 17–21. [Google Scholar]
- Müller, E. Analysis of the biomechanical characteristics of different swinging techniques in alpine skiing. J. Sports Sci. 1994, 12, 261–278. [Google Scholar] [CrossRef] [PubMed]
- Raschner, C. Kinematische und Dynamische Technikanalyse im Slalom als Grundlage für die Entwicklung Skispezifischer Krafttrainingsgeräte und Krafttrainingsmethoden; University of Salzburg: Salzburg, Austria, 1997. [Google Scholar]
- Vaverka, F.; Vodickova, S.; Elfmark, M. Kinetic analysis of ski turns based on measured ground reaction forces. J. Appl. Biomech. 2012, 28, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Müller, E.; Schwameder, H. Biomechanical aspects of new techniques in alpine skiing and ski-jumping. J. Sports Sci. 2003, 21, 679–692. [Google Scholar] [CrossRef]
- Müller, E.; Bartlett, R.; Raschner, C.; Schwameder, H.; Benko-Bernwick, U.; Lindinger, S. Comparisons of the ski turn techniques of experienced and intermediate skiers. J. Sports Sci. 1998, 16, 545–559. [Google Scholar] [CrossRef]
- Ogrin, J.; Šarabon, N.; Madsen, M.K.; Kersting, U.; Holmberg, H.-C.; Supej, M. Asymmetries in Ground Reaction Forces During Turns by Elite Slalom Alpine Skiers Are Not Related to Asymmetries in Muscular Strength. Front. Physiol. 2021, 12, 431. [Google Scholar] [CrossRef]
- Supej, M.; Holmberg, H.-C. How gate setup and turn radii influence energy dissipation in slalom ski racing. J. Appl. Biomech. 2010, 26, 454–464. [Google Scholar] [CrossRef]
- Falda-Buscaiot, T.; Hintzy, F.; Rougier, P.; Lacouture, P.; Coulmy, N. Influence of slope steepness, foot position and turn phase on plantar pressure distribution during giant slalom alpine ski racing. PLoS ONE 2017, 12, e0176975. [Google Scholar] [CrossRef]
- Howe, J. Skiing Mechanics; Poudre Press: Laporte, CO, USA, 1983; 160p. [Google Scholar]
- Schwameder, H.; Nigg, B.M.; Tscharner, V.; Stefanyshyn, D. The effect of binding position on kinetic variables in alpine skiing. In Proceedings of the 2nd International Congress on Skiing and Science, St. Christoph am Arlberg, Austria, 9–15 January 2000; Müller, E., Ed.; Kovacs: Hamburg, Germany, 2001; pp. 43–54. [Google Scholar]
- Reid, R.C.; Haugen, P.; Gilgien, M.; Kipp, R.W.; Smith, G.A. Alpine Ski Motion Characteristics in Slalom. Front. Sports Act. Living 2020, 2, 25. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Jae Jang, Y.; Kim, J.; Kim, J.H.; Kim, H.Y.; Kim, K.; Panday, S.B. Potential of IMU Sensors in Performance Analysis of Professional Alpine Skiers. Sensors 2016, 16, 463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakazato, K.; Scheiber, P.; Müller, E. A comparison of ground reaction forces determined by portable force-plate and pressure-insole systems in alpine skiing. J. Sports Sci. Med. 2011, 10, 754–762. [Google Scholar] [PubMed]
- Martínez, A.; Nakazato, K.; Scheiber, P.; Snyder, C.; Stöggl, T. Comparison of the Turn Switch Time Points Measured by Portable Force Platforms and Pressure Insoles. Front. Sports Act. Living 2020, 2, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stricker, G.; Scheiber, P.; Lindenhofer, E.; Müller, E. Determination of forces in alpine skiing and snowboarding: Validation of a mobile data acquisition system. Eur. J. Sport Sci. 2010, 10, 31–41. [Google Scholar] [CrossRef]
- Nakazato, K.; Scheiber, P.; Müller, E. Comparison between the force application point determined by portable force plate system and the center of pressure determined by pressure insole system during alpine skiing. Sports Eng. 2013, 16, 297–307. [Google Scholar] [CrossRef]
- Klous, M.; Müller, E.; Schwameder, H. Collecting kinematic data on a ski/snowboard track with panning, tilting, and zooming cameras: Is there sufficient accuracy for a biomechanical analysis? J. Sports Sci. 2010, 28, 1345–1353. [Google Scholar] [CrossRef]
- Supej, M.; Hébert-losier, K.; Holmberg, H. Impact of the Steepness of the Slope on the Biomechanics of World Cup Slalom Skiers. Int. J. Sports Physiol. Perform. 2015, 10, 361–368. [Google Scholar] [CrossRef]
- Spörri, J.; Kröll, J.; Schwameder, H.; Müller, E. The role of path length- and speed-related factors for the enhancement of section performance in alpine giant slalom. Eur. J. Sports Sci. 2018, 18, 911–919. [Google Scholar] [CrossRef] [Green Version]
- Fasel, B.; Spörri, J.; Gilgien, M.; Boffi, G.; Chardonnens, J.; Müller, E.; Aminian, K. Three-Dimensional Body and Centre of Mass Kinematics in Alpine Ski Racing Using Differential GNSS and Inertial Sensors. Remote Sens. 2016, 8, 671. [Google Scholar] [CrossRef] [Green Version]
- Fasel, B.; Spörri, J.; Gilgien, M.; Gerber, N.; Falbriard, M.; Müller, E.; Aminian, K. IMU and GNSS-based Turn Switch Detection in Alpine Ski Racing. In Science and Skiing VII, Proceedings of the 7th International Congress on Science and Skiing, St. Christoph/Arlberg, Austria, 10–15 December 2016; Meyer & Meyer Sport: Aachen, Germany, 2018; pp. 86–92. [Google Scholar]
- Gilgien, M.; Kröll, J.; Spörri, J.; Crivelli, P.; Müller, E. Application of dGNSS in Alpine Ski Racing: Basis for Evaluating Physical Demands and Safety. Front. Physiol. 2018, 9, 145. [Google Scholar] [CrossRef] [Green Version]
- Supej, M.; Spörri, J.; Holmberg, H.-C. Methodological and Practical Considerations Associated With Assessment of Alpine Skiing Performance Using Global Navigation Satellite Systems. Front. Sports Act. Living 2020, 1, 74. [Google Scholar] [CrossRef] [PubMed]
- Supej, M.; Nemec, B. Kinematic determination of the beginning of a ski turn. Kinesiol. Slov. 2003, 9, 11–17. [Google Scholar]
- Krüger, A.; Edelmann-Nusser, J. Application of a Full Body Inertial Measurement System in Alpine Skiing: A Comparison With an Optical Video Based System. J. Appl. Biomech. 2010, 26, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Supej, M.; Holmberg, H.-C. Monitoring the Performance of Alpine Skiers with Inertial Motion Units: Practical and Methodological Considerations. J. Sci. Sport Exerc. 2021, 3, 249–256. [Google Scholar] [CrossRef]
- Snyder, C.; Martínez, A.; Jahnel, R.; Roe, J.; Stöggl, T. Connected skiing: Motion quality quantification in alpine skiing. Sensors 2021, 21, 3779. [Google Scholar] [CrossRef]
- Fasel, B.; Gilgien, M.; Spörri, J.; Aminian, K. A New Training Assessment Method for Alpine Ski Racing: Estimating Center of Mass Trajectory by Fusing Inertial Sensors With Periodically Available Position Anchor Points. Front. Physiol. 2018, 9, 1203. [Google Scholar] [CrossRef]
- Yamagiwa, S.; Ohshima, H.; Shirakawa, K. Skill scoring system for ski’s parallel turns. In Proceedings of the 2nd International Congress on Sports Sciences Research and Technology Support—icSPORTS 2014, Rome, Italy, 16–18 October 2014; pp. 121–128. [Google Scholar]
- Martínez, A.; Jahnel, R.; Buchecker, M.; Snyder, C.; Brunauer, R.; Stöggl, T. Development of an Automatic Alpine Skiing Turn Detection Algorithm Based on a Simple Sensor Setup. Sensors 2019, 19, 902. [Google Scholar] [CrossRef] [Green Version]
- Martínez, A.; Snyder, C.; Moore, S.R.; Stöggl, T. A comprehensive comparison and validation of published methods to detect turn switch during alpine skiing. Sensors 2021, 21, 2573. [Google Scholar] [CrossRef]
- Vaverka, F.; Vodickova, S. Laterality of the lower limbs and carving turns. Biol. Sport 2010, 27, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, P.G.; Pyne, D.B.; Minahan, C.L. The physical and physiological demands of basketball training and competition. Int. J. Sports Physiol. Perform. 2010, 5, 75–86. [Google Scholar] [CrossRef] [Green Version]
- International Ski Federation. The International Ski Competition Rules (ICR) Book IV Joint Regulations for Alpine Skiing; International Ski Federation FIS: Oberhofen, Switzerland, 2019; 128p. [Google Scholar]
- Pérez-Chirinos Buxadé, C.; Fernández-Valdés, B.; Morral-Yepes, M.; Tuyà Viñas, S.; Padullés Riu, J.M.; Moras Feliu, G. Validity of a Magnet-Based Timing System Using the Magnetometer Built into an IMU. Sensors 2021, 21, 5773. [Google Scholar] [CrossRef] [PubMed]
- Neuwirth, C.; Snyder, C.; Kremser, W.; Brunauer, R.; Holzer, H.; Stöggl, T. Classification of alpine skiing styles using GNSS and inertial measurement units. Sensors 2020, 20, 4232. [Google Scholar] [CrossRef] [PubMed]
- Kenward, M.G.; Roger, J.H. Small Sample Inference for Fixed Effects from Restricted Maximum Likelihood. Biometrics 1997, 53, 983–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2021. Available online: https://www.r-project.org/ (accessed on 23 October 2021).
- Reid, R.C.; Gilgien, M.; Morger, T.; Tjørhom, H.; Haugen, P.; Kipp, R.; Smith, G. Turn characteristics and energy dissipation in slalom. In Science and Skiing IV; Müller, E., Lindinger, S., Stöggl, T., Eds.; Meyer & Meyer Sport: Maidenhead, UK, 2009; pp. 419–429. [Google Scholar]
- Morton, R.A.; Leach, M.P.; Paine, J.G.; Cardoza, M.A. Monitoring Beach Changes Using GPS Surveying Techniques. J. Coast. Res. 1999, 9, 702–720. Available online: http://www.jstor.org/stable/4298124 (accessed on 10 December 2021).
- Erdmann, W.S.; Giovanis, V.; Aschenbrenner, P.; Kiriakis, V.; Suchanowski, A. Methods for acquiring data on terrain geomorphology, course geometry and kinematics of competitors’ runs in alpine skiing: A historical review. Acta Bioeng. Biomech. 2017, 19, 69–79. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Chirinos Buxadé, C.; Padullés Riu, J.M.; Gavaldà Castet, D.; Trabucchi, M.; Fernández-Valdés, B.; Tuyà Viñas, S.; Moras Feliu, G. Influence of Turn Cycle Structure on Performance of Elite Alpine Skiers Assessed through an IMU in Different Slalom Course Settings. Sensors 2022, 22, 902. https://doi.org/10.3390/s22030902
Pérez-Chirinos Buxadé C, Padullés Riu JM, Gavaldà Castet D, Trabucchi M, Fernández-Valdés B, Tuyà Viñas S, Moras Feliu G. Influence of Turn Cycle Structure on Performance of Elite Alpine Skiers Assessed through an IMU in Different Slalom Course Settings. Sensors. 2022; 22(3):902. https://doi.org/10.3390/s22030902
Chicago/Turabian StylePérez-Chirinos Buxadé, Carla, Josep Maria Padullés Riu, Dani Gavaldà Castet, Michela Trabucchi, Bruno Fernández-Valdés, Sílvia Tuyà Viñas, and Gerard Moras Feliu. 2022. "Influence of Turn Cycle Structure on Performance of Elite Alpine Skiers Assessed through an IMU in Different Slalom Course Settings" Sensors 22, no. 3: 902. https://doi.org/10.3390/s22030902