The Diverse Gait Dataset: Gait Segmentation Using Inertial Sensors for Pedestrian Localization with Different Genders, Heights and Walking Speeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Measurement Protocols
2.2. Sensor System and Setup
2.3. Sensor Signals and Time Synchronization
2.4. Manual Data Labeling
2.4.1. Gait Modes
2.4.2. Data Annotation
2.4.3. Data File Description
2.5. Stride Segmentation Method
2.5.1. Template Generation
2.5.2. Data Normalization
2.5.3. Calculation of Distance Matrix of Shape Descriptor Sequence
2.5.4. Augmented Time Warping Scheme
2.5.5. Complexity Analysis
2.5.6. Time Constraints
2.6. Gait Division
2.7. Error Measurement
2.7.1. Precision
2.7.2. Recall
2.7.3. F-Measure
3. Experiments and Results
3.1. Separate Performance Evaluation of Two Types of Shape Descriptors
3.2. Stride Segmentation with Selected Shape Descriptors and Combined Sensor Types
3.3. Stride Segmentation with Compound Shape Descriptors
3.4. Gait Recognition with Optimal Shape Descriptor and Sensor Type
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Xu, L.; Xiong, Z.; Zhao, R. An Indoor Pedestrian Navigation Algorithm Based on Smartphone Mode Recognition. In Proceedings of the 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu China, 15–17 March 2019; pp. 831–835. [Google Scholar]
- Gang, H.-S.; Pyun, J.-Y. A Smartphone Indoor Positioning System Using Hybrid Localization Technology. Energies 2019, 12, 3702. [Google Scholar] [CrossRef] [Green Version]
- Abdelbar, M.; Buehrer, R.M. Pedestrian GraphSLAM Using Smartphone-Based PDR in Indoor Environments. In Proceedings of the 2018 IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar]
- Angrisano, A.; Vultaggio, M.; Gaglione, S.; Crocetto, N. Pedestrian Localization with PDR Supplemented by GNSS. In Proceedings of the 2019 European Navigation Conference (ENC), Warsaw, Poland, 9–12 April 2019; pp. 1–6. [Google Scholar]
- Ashraf, I.; Hur, S.; Shafiq, M.; Kumari, S.; Park, Y. GUIDE: Smartphone Sensors-Based Pedestrian Indoor Localization with Heterogeneous Devices. Int. J. Commun. Syst. 2019, 32, e4062. [Google Scholar] [CrossRef]
- Ciabattoni, L.; Foresi, G.; Monteriù, A.; Pepa, L.; Pagnotta, D.P.; Spalazzi, L.; Verdini, F. Real Time Indoor Localization Integrating a Model Based Pedestrian Dead Reckoning on Smartphone and BLE Beacons. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 1–12. [Google Scholar] [CrossRef]
- Huang, H.-Y.; Hsieh, C.-Y.; Liu, K.-C.; Cheng, H.-C.; Hsu, S.J.; Chan, C.-T. Multimodal Sensors Data Fusion for Improving Indoor Pedestrian Localization. In Proceedings of the 2018 IEEE International Conference on Applied System Invention (ICASI), Tokyo, Japan, 13–17 April 2018; pp. 283–286. [Google Scholar]
- Barth, J.; Oberndorfer, C.; Pasluosta, C.; Schülein, S.; Gassner, H.; Reinfelder, S.; Kugler, P.; Schuldhaus, D.; Winkler, J.; Klucken, J.; et al. Stride Segmentation during Free Walk Movements Using Multi-Dimensional Subsequence Dynamic Time Warping on Inertial Sensor Data. Sensors 2015, 15, 6419–6440. Available online: https://www.mad.tf.fau.de/research/activitynet/digital-biobank/ (accessed on 2 January 2022). [CrossRef]
- Mao, Y.; Ogata, T.; Ora, H.; Tanaka, N.; Miyake, Y. Estimation of Stride-by-Stride Spatial Gait Parameters Using Inertial Measurement Unit Attached to the Shank with Inverted Pendulum Model. Sci. Rep. 2021, 11, 1391. [Google Scholar] [CrossRef]
- Rampp, A.; Barth, J.; Schülein, S.; Gaßmann, K.-G.; Klucken, J.; Eskofier, B.M. Inertial Sensor-Based Stride Parameter Calculation from Gait Sequences in Geriatric Patients. IEEE Trans. Biomed. Eng. 2015, 62, 1089–1097. [Google Scholar] [CrossRef]
- Kang, X.; Huang, B.; Qi, G. A Novel Walking Detection and Step Counting Algorithm Using Unconstrained Smartphones. Sensors 2018, 18, 297. [Google Scholar] [CrossRef] [Green Version]
- Kang, X.; Huang, B.; Yang, R.; Qi, G. Accurately Counting Steps of the Pedestrian with Varying Walking Speeds. In Proceedings of the 2018 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Guangzhou, China, 8–12 October 2018; pp. 679–686. [Google Scholar]
- Wang, Y.; Shkel, A.M. Adaptive Threshold for Zero-Velocity Detector in ZUPT-Aided Pedestrian Inertial Navigation. IEEE Sens. Lett. 2019, 3, 7002304. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, S.; Ni, Z.; Qian, W.; Gu, C.; Cao, Z. Pedestrian Navigation Method Based on Machine Learning and Gait Feature Assistance. Sensors 2020, 20, 1530. [Google Scholar] [CrossRef] [Green Version]
- Foxlin, E. Pedestrian Tracking with Shoe-Mounted Inertial Sensors. IEEE Comput. Graph. Appl. 2005, 25, 38–46. [Google Scholar] [CrossRef]
- Nilsson, J.-O.; Skog, I.; Händel, P.; Hari, K.V.S. Foot-Mounted INS for Everybody—An Open-Source Embedded Implementation. In Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium, Myrtle Beach, SC, USA, 23–26 April 2012; pp. 140–145. [Google Scholar]
- A Reliable and Accurate Indoor Localization Method Using Phone Inertial Sensors | Proceedings of the 2012 ACM Conference on Ubiquitous Computing. Available online: https://dl.acm.org/doi/abs/10.1145/2370216.2370280 (accessed on 26 December 2021).
- Weinberg, H. Using the ADXL202 in Pedometer and Personal Navigation Applications; Analog Devices AN-602 Application Note; Analog Devices: Norwood, MA, USA, 2002. [Google Scholar]
- Kim, J.W.; Jang, H.J.; Hwang, D.-H.; Park, C. A Step, Stride and Heading Determination for the Pedestrian Navigation System. J. GPS 2004, 3, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Enhancing the Performance of Pedometers Using a Single Accelerometer|Analog Devices. Available online: https://www.analog.com/en/analog-dialogue/articles/enhancing-pedometers-using-single-accelerometer.html (accessed on 7 January 2022).
- Xing, H.; Li, J.; Hou, B.; Zhang, Y.; Guo, M. Pedestrian Stride Length Estimation from IMU Measurements and ANN Based Algorithm. J. Sens. 2017, 2017, e6091261. [Google Scholar] [CrossRef] [Green Version]
- Hannink, J.; Kautz, T.; Pasluosta, C.F.; Barth, J.; Schülein, S.; Gaßmann, K.-G.; Klucken, J.; Eskofier, B.M. Mobile Stride Length Estimation with Deep Convolutional Neural Networks. IEEE J. Biomed. Health Inform. 2018, 22, 354–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Continuous Home Monitoring of Parkinson’s Disease Using Inertial Sensors: A Systematic Review. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246528 (accessed on 7 December 2021).
- Mirelman, A.; Bonato, P.; Camicioli, R.; Ellis, T.D.; Giladi, N.; Hamilton, J.L.; Hass, C.J.; Hausdorff, J.M.; Pelosin, E.; Almeida, Q.J. Gait Impairments in Parkinson’s Disease. Lancet Neurol. 2019, 18, 697–708. [Google Scholar] [CrossRef]
- Chatzaki, C.; Skaramagkas, V.; Tachos, N.; Christodoulakis, G.; Maniadi, E.; Kefalopoulou, Z.; Fotiadis, D.I.; Tsiknakis, M. The Smart-Insole Dataset: Gait Analysis Using Wearable Sensors with a Focus on Elderly and Parkinson’s Patients. Sensors 2021, 21, 2821. [Google Scholar] [CrossRef] [PubMed]
- Evers, L.J.; Raykov, Y.P.; Krijthe, J.H.; Silva de Lima, A.L.; Badawy, R.; Claes, K.; Heskes, T.M.; Little, M.A.; Meinders, M.J.; Bloem, B.R. Real-Life Gait Performance as a Digital Biomarker for Motor Fluctuations: The Parkinson@Home Validation Study. J. Med. Internet Res. 2020, 22, e19068. [Google Scholar] [CrossRef]
- Haji Ghassemi, N.; Hannink, J.; Martindale, C.F.; Gaßner, H.; Müller, M.; Klucken, J.; Eskofier, B.M. Segmentation of Gait Sequences in Sensor-Based Movement Analysis: A Comparison of Methods in Parkinson’s Disease. Sensors 2018, 18, 145. [Google Scholar] [CrossRef] [Green Version]
- Pasluosta, C.F.; Gassner, H.; Winkler, J.; Klucken, J.; Eskofier, B.M. An Emerging Era in the Management of Parkinson’s Disease: Wearable Technologies and the Internet of Things. IEEE J. Biomed. Health Inform. 2015, 19, 1873–1881. [Google Scholar] [CrossRef]
- Martindale, C.F.; Christlein, V.; Klumpp, P.; Eskofier, B.M. Wearables-Based Multi-Task Gait and Activity Segmentation Using Recurrent Neural Networks. Neurocomputing 2020, 432, 250–261. [Google Scholar] [CrossRef]
- Kluge, F.; Gaßner, H.; Hannink, J.; Pasluosta, C.; Klucken, J.; Eskofier, B.M. Towards Mobile Gait Analysis: Concurrent Validity and Test-Retest Reliability of an Inertial Measurement System for the Assessment of Spatio-Temporal Gait Parameters. Sensors 2017, 17, 1522. Available online: https://www.mad.tf.fau.de/research/activitynet/sensor-based-gait-analysis-validation-data-kluge-et-al-2017/ (accessed on 2 January 2022). [CrossRef]
- Khandelwal, S.; Wickström, N. Evaluation of the Performance of Accelerometer-Based Gait Event Detection Algorithms in Different Real-World Scenarios Using the MAREA Gait Database. Gait Posture 2017, 51, 84–90. Available online: https://wiki.hh.se/caisr/index.php/Gait_database (accessed on 2 January 2022). [CrossRef] [PubMed]
- Martindale, C.F.; Roth, N.; Hannink, J.; Sprager, S.; Eskofier, B.M. Smart Annotation Tool for Multi-Sensor Gait-Based Daily Activity Data. In Proceedings of the 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), March 2018; pp. 549–554. Available online: https://www.mad.tf.fau.de/research/activitynet/benchmark-cyclic-activity-recognition-database-using-wearables/ (accessed on 2 January 2022).
- Givon, U.; Zeilig, G.; Achiron, A. Gait Analysis in Multiple Sclerosis: Characterization of Temporal-Spatial Parameters Using GAITRite Functional Ambulation System. Gait Posture 2009, 29, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, L.A.; De Asha, A.R.; Rainbow, M.J.; Dickinson, A.W.L.; Deluzio, K.J. A Comparison of Centre of Pressure Behaviour and Ground Reaction Force Magnitudes When Individuals Walk Overground and on an Instrumented Treadmill. Gait Posture 2021, 83, 174–176. [Google Scholar] [CrossRef] [PubMed]
- Lueken, M.; ten Kate, W.; Batista, J.P.; Ngo, C.; Bollheimer, C.; Leonhardt, S. Peak Detection Algorithm for Gait Segmentation in Long-Term Monitoring for Stride Time Estimation Using Inertial Measurement Sensors. In Proceedings of the 2019 IEEE EMBS International Conference on Biomedical Health Informatics (BHI), Chicago, IL, USA, 19–22 May 2019; pp. 1–4. [Google Scholar]
- Zhao, N. Full-Featured Pedometer Design Realized with 3-Axis Digital Accelerometer; Analog Devices: Norwood, MA, USA, 2010; Volume 5. [Google Scholar]
- Jain, R.; Semwal, V.; Kaushik, P. Stride Segmentation of Inertial Sensor Data Using Statistical Methods for Different Walking Activities. Robotica 2021, 40, 1–14. [Google Scholar] [CrossRef]
- Figueiredo, J.; Felix, P.; Costa, L.; Moreno, J.C.; Santos, C.P. Gait Event Detection in Controlled and Real-Life Situations: Repeated Measures from Healthy Subjects. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1945–1956. [Google Scholar] [CrossRef]
- Pérez-Ibarra, J.C.; Siqueira, A.A.G.; Krebs, H.I. Adaptive Gait Phase Segmentation Based on the Time-Varying Identification of the Ankle Dynamics: Technique and Simulation Results. In Proceedings of the 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), New York, NY, USA, 29 November–1 December 2020; pp. 734–739. [Google Scholar]
- Oudre, L.; Barrois-Müller, R.; Moreau, T.; Truong, C.; Vienne-Jumeau, A.; Ricard, D.; Vayatis, N.; Vidal, P.-P. Template-Based Step Detection with Inertial Measurement Units. Sensors 2018, 18, 4033. [Google Scholar] [CrossRef] [Green Version]
- Vienne-Jumeau, A.; Oudre, L.; Moreau, A.; Quijoux, F.; Vidal, P.-P.; Ricard, D. Comparing Gait Trials with Greedy Template Matching. Sensors 2019, 19, 3089. [Google Scholar] [CrossRef] [Green Version]
- Ji, N.; Zhou, H.; Guo, K.; Samuel, O.W.; Huang, Z.; Xu, L.; Li, G. Appropriate Mother Wavelets for Continuous Gait Event Detection Based on Time-Frequency Analysis for Hemiplegic and Healthy Individuals. Sensors 2019, 19, 3462. [Google Scholar] [CrossRef] [Green Version]
- Khandelwal, S.; Wickström, N. Identification of Gait Events Using Expert Knowledge and Continuous Wavelet Transform Analysis. In Proceedings of the International Joint Conference on Biomedical Engineering Systems and Technologies, Setubal, Portugal, 3–6 March 2014; SCITEPRESS—Science and Technology Publications: Setubal, Portugal, 2014; Volume 4, pp. 197–204. [Google Scholar]
- Chakraborty, J.; Nandy, A. Discrete Wavelet Transform Based Data Representation in Deep Neural Network for Gait Abnormality Detection. Biomed. Signal Process. Control. 2020, 62, 102076. [Google Scholar] [CrossRef]
- Prateek, G.V.; Mazzoni, P.; Earhart, G.M.; Nehorai, A. Gait Cycle Validation and Segmentation Using Inertial Sensors. IEEE Trans. Biomed. Eng. 2020, 67, 2132–2144. [Google Scholar] [CrossRef]
- Martindale, C.F.; Sprager, S.; Eskofier, B.M. Hidden Markov Model-Based Smart Annotation for Benchmark Cyclic Activity Recognition Database Using Wearables. Sensors 2019, 19, 1820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martindale, C.F.; Hoenig, F.; Strohrmann, C.; Eskofier, B.M. Smart Annotation of Cyclic Data Using Hierarchical Hidden Markov Models. Sensors 2017, 17, 2328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, N.; Küderle, A.; Ullrich, M.; Gladow, T.; Marxreiter, F.; Klucken, J.; Eskofier, B.M.; Kluge, F. Hidden Markov Model Based Stride Segmentation on Unsupervised Free-Living Gait Data in Parkinson’s Disease Patients. J. NeuroEng. Rehabil. 2021, 18, 93. [Google Scholar] [CrossRef] [PubMed]
- Angermann, M.; Robertson, P.; Kemptner, T.; Khider, M. A High Precision Reference Data Set for Pedestrian Navigation Using Foot-Mounted Inertial Sensors. In Proceedings of the 2010 International Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland, 15–17 September 2010; pp. 1–6. [Google Scholar]
- ELAN: A Professional Framework for Multimodality Research—ACL Anthology. Available online: https://aclanthology.org/L06-1082/ (accessed on 25 November 2021).
- Jiang, Y.; Qi, Y.; Wang, W.K.; Bent, B.; Avram, R.; Olgin, J.; Dunn, J. EventDTW: An Improved Dynamic Time Warping Algorithm for Aligning Biomedical Signals of Nonuniform Sampling Frequencies. Sensors 2020, 20, 2700. [Google Scholar] [CrossRef]
- Mueen, A.; Keogh, E. Extracting Optimal Performance from Dynamic Time Warping. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016; pp. 2129–2130. [Google Scholar]
- Stream Monitoring under the Time Warping Distance. IEEE Conference Publication. IEEE Xplore. Available online: https://ieeexplore.ieee.org/document/4221753 (accessed on 12 December 2021).
- Zhao, J.; Itti, L. ShapeDTW: Shape Dynamic Time Warping. arXiv 2016, arXiv:1606.01601. [Google Scholar] [CrossRef] [Green Version]
- Røislien, J.; Skare, Ø.; Gustavsen, M.; Broch, N.L.; Rennie, L.; Opheim, A. Simultaneous Estimation of Effects of Gender, Age and Walking Speed on Kinematic Gait Data. Gait Posture 2009, 30, 441–445. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, L.; Qiu, S.; Wang, Z.; Yang, N.; Xu, J. Pedestrian Dead Reckoning Using Pocket-Worn Smartphone. IEEE Access 2019, 7, 91063–91073. [Google Scholar] [CrossRef]
- Gu, F. Indoor Localization Supported by Landmark Graph and Locomotion Activity Recognition. Ph.D. Thesis, University of Melbourne, Parkville, VIC, Australia, 2018. [Google Scholar]
- Yu, T.; Jin, H.; Nahrstedt, K. ShoesLoc: In-Shoe Force Sensor-Based Indoor Walking Path Tracking. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2019, 3, 23. [Google Scholar] [CrossRef]
- Chen, C.; Lu, X.; Wahlstrom, J.; Markham, A.; Trigoni, N. Deep Neural Network Based Inertial Odometry Using Low-Cost Inertial Measurement Units. IEEE Trans. Mob. Comput. 2019, 20, 1351–1364. [Google Scholar] [CrossRef]
- Deng, H.; Runger, G.; Tuv, E.; Vladimir, M. A Time Series Forest for Classification and Feature Extraction. Inf. Sci. 2013, 239, 142–153. [Google Scholar] [CrossRef] [Green Version]
Dataset | Digital Biobank | Sensor-Based Gait Analysis Validation Data [30] | MAREA [31] | Smart Annotation Cyclic Activities Dataset [32] | The Diverse Gait Dataset | |
---|---|---|---|---|---|---|
eGaIT-Validation Stride Segmentation [8] | eGaIT-Validation Gait Parameters [10] | |||||
Sampling frequency [Hz] | 102.4 | 102.4 | 102.4 | 128 | 200 | 100 |
Reference Data | GAITRite (pressure sensors) | Manual annotation | Motion capture system | Piezo-electric force sensitive resistors | Camera recordings (30 Hz) | Camera recordings |
Number of subjects | 101 (55 females and 46 males) | 70 (39 males and 41 females) | 15 (8 males and 7 females) | 20 (12 males and 8 females) | 18 (14 males and 4 females) | 22 (13 males and 9 females) |
Subject health description | Generic patients. | Elderly controls (45), PD patients (15), geriatric patients (15). | Healthy (11), PD patients (4). | All healthy. | All healthy. | All healthy. |
Scenarios | laboratory settings | Indoor: obstacle-free environment; Outdoor: overground. | Laboratory settings. | Indoor: laboratory settings; Outdoor: overground streets. | Outdoor: A prescribed circuit in outdoor setting with varying surfaces. | Indoor corridors. |
Sensor wear positions | Shoe | Shoe | Shoe | Waists, left wrist, left and right ankles | Shoe | Shoe |
Labels | Gait velocity, cadence, step length, heel to heel base of support width, length of gait phases. [33] | The start and end point of each stride | Heel-strike, toe-off, heel-off | Heel-strike, toe-off | The start and end point of each stride | Stance, toe-off, heel-strike. |
Walking distance/duration | 10 m normal walk; 1–2 min four-wheeled walk; | 40 m straight walk; 2 min free walk; | 4 × 10 m walk; | Treadmill walk; outdoor walk/run/jog; | - | 46 m straight walk |
Number of strides | - | - | 1116 strides (1037 from healthy subjects, 129 from patients.) | - | 2263 walking strides and 1391 running strides | 4690 walking strides |
Height Range (cm) | Males | Females | Number of Strides (Speed Type) | Number of Gait Phases | ||
---|---|---|---|---|---|---|
155~160 | - | 2 | fast | 142 | stance | 487 |
middle | 159 | pushoff | 478 | |||
slow | 171 | swing | 474 | |||
all | 472 | heel-strike | 474 | |||
160~165 | 2 | 3 | fast | 261 | stance | 1121 |
middle | 337 | pushoff | 1100 | |||
slow | 475 | swing | 1113 | |||
all | 1073 | heel-strike | 1110 | |||
165~170 | 2 | 2 | fast | 298 | stance | 1022 |
middle | 324 | pushoff | 1013 | |||
slow | 367 | swing | 1113 | |||
all | 989 | heel-strike | 998 | |||
170~176 | 4 | 1 | fast | 406 | stance | 1358 |
middle | 440 | pushoff | 1353 | |||
slow | 459 | swing | 1006 | |||
all | 1305 | heel-strike | 1378 | |||
176~180 | 2 | 1 | fast | 123 | stance | 408 |
middle | 121 | pushoff | 399 | |||
slow | 146 | swing | 400 | |||
all | 390 | heel-strike | 393 | |||
180~185 | 3 | - | fast | 150 | stance | 480 |
middle | 114 | pushoff | 470 | |||
slow | 197 | swing | 470 | |||
all | 461 | heel-strike | 465 |
Shape Dscriptor | Speed | AccX | AccY | AccZ | GyroX | GyroY | GyroZ |
---|---|---|---|---|---|---|---|
RAW | fast | 0.623 ± 0.022 | 0.499 ± 0.048 | 0.537 ± 0.056 | 0.328 ± 0.049 | 0.605 ± 0.018 | 0.737 ± 0.069 |
mid | 0.505 ± 0.066 | 0.681 ± 0.042 | 0.559 ± 0.088 | 0.362 ± 0.051 | 0.727 ± 0.049 | 0.832 ± 0.019 | |
slow | 0.534 ± 0.077 | 0.807 ± 0.012 | 0.607 ± 0.067 | 0.449 ± 0.069 | 0.774 ± 0.029 | 0.831 ± 0.008 | |
all | 0.63 ± 0.052 | 0.654 ± 0.043 | 0.577 ± 0.072 | 0.426 ± 0.07 | 0.675 ± 0.063 | 0.796 ± 0.034 | |
PAA | fast | 0.758 ± 0.015 | 0.65 ± 0.071 | 0.306 ± 0.055 | 0.256 ± 0.042 | 0.642 ± 0.024 | 0.819 ± 0.029 |
mid | 0.783 ± 0.025 | 0.748 ± 0.057 | 0.35 ± 0.066 | 0.232 ± 0.061 | 0.73 ± 0.038 | 0.852 ± 0.006 | |
slow | 0.691 ± 0.033 | 0.76 ± 0.024 | 0.377 ± 0.04 | 0.477 ± 0.071 | 0.769 ± 0.033 | 0.816 ± 0.011 | |
all | 0.784 ± 0.019 | 0.666 ± 0.06 | 0.265 ± 0.043 | 0.278 ± 0.052 | 0.705 ± 0.057 | 0.833 ± 0.013 | |
DWT | fast | 0.765 ± 0.012 | 0.451 ± 0.081 | 0.304 ± 0.051 | 0.294 ± 0.052 | 0.652 ± 0.031 | 0.811 ± 0.031 |
mid | 0.782 ± 0.027 | 0.638 ± 0.051 | 0.333 ± 0.06 | 0.206 ± 0.038 | 0.67 ± 0.025 | 0.847 ± 0.007 | |
slow | 0.739 ± 0.029 | 0.687 ± 0.05 | 0.375 ± 0.056 | 0.38 ± 0.069 | 0.722 ± 0.029 | 0.806 ± 0.011 | |
all | 0.761 ± 0.026 | 0.497 ± 0.07 | 0.243 ± 0.045 | 0.22 ± 0.051 | 0.687 ± 0.042 | 0.835 ± 0.008 |
Shape Dscriptor | Speed | AccX | AccY | AccZ | GyroX | GyroY | GyroZ |
---|---|---|---|---|---|---|---|
SLOPE | fast | 0.016 ± 0.001 | 0.014 ± 0.001 | 0.015 ± 0.001 | 0.025 ± 0.001 | 0.109 ± 0.043 | 0.059 ± 0.023 |
mid | 0.032 ± 0.007 | 0.045 ± 0.008 | 0.014 ± 0.001 | 0.046 ± 0.005 | 0.165 ± 0.043 | 0.207 ± 0.072 | |
slow | 0.148 ± 0.042 | 0.203 ± 0.037 | 0.115 ± 0.025 | 0.296 ± 0.066 | 0.44 ± 0.059 | 0.414 ± 0.115 | |
all | 0.071 ± 0.02 | 0.069 ± 0.015 | 0.029 ± 0.004 | 0.146 ± 0.052 | 0.157 ± 0.039 | 0.245 ± 0.093 | |
DERIVATIVE | fast | 0.014 ± 0 | 0.019 ± 0.001 | 0.013 ± 0.001 | 0.023 ± 0.001 | 0.112 ± 0.049 | 0.067 ± 0.025 |
mid | 0.026 ± 0.003 | 0.041 ± 0.004 | 0.016 ± 0.001 | 0.041 ± 0.003 | 0.161 ± 0.044 | 0.249 ± 0.083 | |
slow | 0.198 ± 0.063 | 0.293 ± 0.079 | 0.157 ± 0.04 | 0.304 ± 0.067 | 0.447 ± 0.075 | 0.418 ± 0.124 | |
all | 0.109 ± 0.04 | 0.111 ± 0.039 | 0.052 ± 0.015 | 0.145 ± 0.05 | 0.167 ± 0.049 | 0.261 ± 0.1 | |
HOG1D | fast | 0.13 ± 0.031 | 0.228 ± 0.073 | 0.237 ± 0.071 | 0.179 ± 0.026 | 0.578 ± 0.052 | 0.094 ± 0.025 |
mid | 0.154 ± 0.021 | 0.455 ± 0.091 | 0.246 ± 0.058 | 0.166 ± 0.03 | 0.639 ± 0.036 | 0.218 ± 0.048 | |
slow | 0.238 ± 0.047 | 0.232 ± 0.059 | 0.273 ± 0.061 | 0.308 ± 0.039 | 0.65 ± 0.027 | 0.504 ± 0.054 | |
all | 0.186 ± 0.04 | 0.257 ± 0.065 | 0.285 ± 0.056 | 0.267 ± 0.054 | 0.454 ± 0.07 | 0.334 ± 0.078 |
Shape Dscriptor | Speed | AccXY | AccXZ | AccYZ | AccXYZ | GyroXY | GyroXZ | GyroYZ | GyroXYZ |
---|---|---|---|---|---|---|---|---|---|
DWT | fast | 0.585 ± 0.015 | 0.607 ± 0.03 | 0.649 ± 0.043 | 0.596 ± 0.009 | 0.504 ± 0.042 | 0.251 ± 0.083 | 0.273 ± 0.083 | 0.304 ± 0.082 |
mid | 0.593 ± 0.017 | 0.523 ± 0.07 | 0.682 ± 0.023 | 0.589 ± 0.018 | 0.305 ± 0.054 | 0.375 ± 0.067 | 0.381 ± 0.081 | 0.386 ± 0.058 | |
slow | 0.669 ± 0.03 | 0.543 ± 0.063 | 0.767 ± 0.015 | 0.674 ± 0.032 | 0.487 ± 0.046 | 0.742 ± 0.053 | 0.718 ± 0.055 | 0.699 ± 0.061 | |
all | 0.628 ± 0.019 | 0.581 ± 0.072 | 0.666 ± 0.033 | 0.624 ± 0.018 | 0.388 ± 0.065 | 0.347 ± 0.108 | 0.336 ± 0.098 | 0.337 ± 0.102 | |
PAA | fast | 0.512 ± 0.035 | 0.592 ± 0.045 | 0.652 ± 0.058 | 0.516 ± 0.044 | 0.364 ± 0.066 | 0.144 ± 0.04 | 0.122 ± 0.022 | 0.076 ± 0.013 |
mid | 0.552 ± 0.043 | 0.432 ± 0.051 | 0.723 ± 0.038 | 0.561 ± 0.038 | 0.219 ± 0.047 | 0.421 ± 0.066 | 0.385 ± 0.075 | 0.393 ± 0.074 | |
slow | 0.659 ± 0.031 | 0.494 ± 0.063 | 0.778 ± 0.017 | 0.654 ± 0.048 | 0.4 ± 0.053 | 0.794 ± 0.051 | 0.813 ± 0.047 | 0.805 ± 0.041 | |
all | 0.602 ± 0.032 | 0.557 ± 0.068 | 0.697 ± 0.034 | 0.602 ± 0.034 | 0.348 ± 0.061 | 0.441 ± 0.128 | 0.41 ± 0.121 | 0.405 ± 0.128 | |
HOG1D | fast | 0.628 ± 0.023 | 0.274 ± 0.041 | 0.639 ± 0.029 | 0.609 ± 0.017 | 0.654 ± 0.009 | 0.567 ± 0.076 | 0.632 ± 0.066 | 0.571 ± 0.055 |
mid | 0.603 ± 0.033 | 0.319 ± 0.037 | 0.59 ± 0.027 | 0.598 ± 0.024 | 0.74 ± 0.022 | 0.649 ± 0.012 | 0.677 ± 0.019 | 0.662 ± 0.021 | |
slow | 0.638 ± 0.045 | 0.544 ± 0.037 | 0.674 ± 0.042 | 0.63 ± 0.042 | 0.735 ± 0.024 | 0.724 ± 0.03 | 0.745 ± 0.014 | 0.724 ± 0.026 | |
all | 0.538 ± 0.042 | 0.313 ± 0.054 | 0.576 ± 0.042 | 0.552 ± 0.043 | 0.642 ± 0.028 | 0.759 ± 0.039 | 0.776 ± 0.034 | 0.782 ± 0.033 |
Shape Dscriptor | Single Axis | AccX | AccY | AccZ | GyroX | GyroX | GyroZ | ||
---|---|---|---|---|---|---|---|---|---|
(HOG1D, RAW) | fast | 0.515 ± 0.028 | 0.584 ± 0.031 | 0.325 ± 0.064 | 0.339 ± 0.046 | 0.566 ± 0.022 | 0.815 ± 0.021 | ||
mid | 0.409 ± 0.067 | 0.721 ± 0.008 | 0.28 ± 0.071 | 0.305 ± 0.041 | 0.676 ± 0.043 | 0.83 ± 0.021 | |||
slow | 0.438 ± 0.068 | 0.835 ± 0.008 | 0.253 ± 0.063 | 0.438 ± 0.068 | 0.732 ± 0.029 | 0.824 ± 0.009 | |||
all | 0.427 ± 0.061 | 0.641 ± 0.034 | 0.276 ± 0.057 | 0.311 ± 0.052 | 0.636 ± 0.072 | 0.823 ± 0.015 | |||
(HOG1D, DWT) | fast | 0.443 ± 0.05 | 0.557 ± 0.039 | 0.301 ± 0.069 | 0.361 ± 0.043 | 0.599 ± 0.011 | 0.771 ± 0.038 | ||
mid | 0.317 ± 0.051 | 0.703 ± 0.027 | 0.259 ± 0.056 | 0.36 ± 0.037 | 0.629 ± 0.038 | 0.798 ± 0.021 | |||
slow | 0.399 ± 0.051 | 0.747 ± 0.034 | 0.267 ± 0.043 | 0.423 ± 0.04 | 0.702 ± 0.032 | 0.788 ± 0.012 | |||
all | 0.372 ± 0.061 | 0.598 ± 0.038 | 0.3 ± 0.056 | 0.312 ± 0.054 | 0.625 ± 0.059 | 0.795 ± 0.017 | |||
(HOG1D, PAA) | fast | 0.295 ± 0.048 | 0.647 ± 0.04 | 0.355 ± 0.072 | 0.352 ± 0.061 | 0.598 ± 0.014 | 0.758 ± 0.059 | ||
mid | 0.307 ± 0.059 | 0.765 ± 0.015 | 0.334 ± 0.075 | 0.404 ± 0.048 | 0.68 ± 0.038 | 0.817 ± 0.022 | |||
slow | 0.413 ± 0.062 | 0.758 ± 0.026 | 0.206 ± 0.039 | 0.398 ± 0.041 | 0.744 ± 0.019 | 0.741 ± 0.03 | |||
all | 0.291 ± 0.056 | 0.623 ± 0.041 | 0.299 ± 0.067 | 0.311 ± 0.056 | 0.652 ± 0.058 | 0.776 ± 0.033 | |||
Fuse axis | AccXY | AccXZ | AccYZ | AccXYZ | GyroXY | GyroXZ | GyroYZ | GyroXYZ | |
(HOG1D, RAW) | fast | 0.583 ± 0.031 | 0.454 ± 0.05 | 0.612 ± 0.019 | 0.572 ± 0.023 | 0.533 ± 0.03 | 0.175 ± 0.039 | 0.352 ± 0.076 | 0.188 ± 0.049 |
mid | 0.546 ± 0.037 | 0.389 ± 0.058 | 0.67 ± 0.034 | 0.542 ± 0.041 | 0.616 ± 0.033 | 0.528 ± 0.092 | 0.609 ± 0.083 | 0.584 ± 0.097 | |
slow | 0.631 ± 0.03 | 0.424 ± 0.065 | 0.796 ± 0.021 | 0.653 ± 0.017 | 0.626 ± 0.038 | 0.799 ± 0.032 | 0.837 ± 0.015 | 0.803 ± 0.032 | |
all | 0.59 ± 0.048 | 0.38 ± 0.068 | 0.619 ± 0.035 | 0.571 ± 0.052 | 0.521 ± 0.054 | 0.399 ± 0.113 | 0.409 ± 0.114 | 0.385 ± 0.116 | |
(HOG1D, DWT) | fast | 0.574 ± 0.033 | 0.386 ± 0.062 | 0.572 ± 0.027 | 0.562 ± 0.033 | 0.538 ± 0.035 | 0.206 ± 0.038 | 0.341 ± 0.061 | 0.259 ± 0.056 |
mid | 0.518 ± 0.036 | 0.359 ± 0.058 | 0.516 ± 0.039 | 0.529 ± 0.042 | 0.626 ± 0.023 | 0.49 ± 0.043 | 0.494 ± 0.061 | 0.511 ± 0.04 | |
slow | 0.598 ± 0.038 | 0.366 ± 0.066 | 0.72 ± 0.031 | 0.596 ± 0.036 | 0.626 ± 0.042 | 0.72 ± 0.04 | 0.776 ± 0.026 | 0.766 ± 0.027 | |
all | 0.518 ± 0.061 | 0.319 ± 0.057 | 0.565 ± 0.043 | 0.512 ± 0.058 | 0.55 ± 0.052 | 0.465 ± 0.087 | 0.434 ± 0.098 | 0.416 ± 0.092 | |
(HOG1D, PAA) | fast | 0.564 ± 0.023 | 0.315 ± 0.054 | 0.63 ± 0.017 | 0.529 ± 0.024 | 0.536 ± 0.029 | 0.262 ± 0.059 | 0.34 ± 0.061 | 0.301 ± 0.058 |
mid | 0.496 ± 0.046 | 0.349 ± 0.067 | 0.567 ± 0.051 | 0.512 ± 0.04 | 0.707 ± 0.02 | 0.447 ± 0.051 | 0.536 ± 0.034 | 0.45 ± 0.055 | |
slow | 0.515 ± 0.051 | 0.379 ± 0.055 | 0.764 ± 0.016 | 0.492 ± 0.046 | 0.714 ± 0.022 | 0.721 ± 0.036 | 0.781 ± 0.02 | 0.756 ± 0.029 | |
all | 0.46 ± 0.059 | 0.287 ± 0.054 | 0.616 ± 0.03 | 0.468 ± 0.054 | 0.585 ± 0.034 | 0.436 ± 0.093 | 0.503 ± 0.085 | 0.508 ± 0.094 |
msDTW | Wavelet Based Method | SDATW | |
---|---|---|---|
fast | 0.813 | 0.714 | 0.811 |
mid | 0.818 | 0.781 | 0.847 |
slow | 0.829 | 0.815 | 0.806 |
all | 0.822 | 0.773 | 0.835 |
Walking Speed | Stance | Pushoff | Swing | Heel-Strike |
---|---|---|---|---|
Fast | 0.8046 | 0.8522 | 0.8596 | 0.7884 |
Middle | 0.7784 | 0.8461 | 0.8835 | 0.8056 |
Slow | 0.701 | 0.6958 | 0.8399 | 0.7180 |
Full Range | 0.7548 | 0.7925 | 0.8597 | 0.7674 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.; Zhang, F.; Xu, Z.; Wei, J. The Diverse Gait Dataset: Gait Segmentation Using Inertial Sensors for Pedestrian Localization with Different Genders, Heights and Walking Speeds. Sensors 2022, 22, 1678. https://doi.org/10.3390/s22041678
Huang C, Zhang F, Xu Z, Wei J. The Diverse Gait Dataset: Gait Segmentation Using Inertial Sensors for Pedestrian Localization with Different Genders, Heights and Walking Speeds. Sensors. 2022; 22(4):1678. https://doi.org/10.3390/s22041678
Chicago/Turabian StyleHuang, Chao, Fuping Zhang, Zhengyi Xu, and Jianming Wei. 2022. "The Diverse Gait Dataset: Gait Segmentation Using Inertial Sensors for Pedestrian Localization with Different Genders, Heights and Walking Speeds" Sensors 22, no. 4: 1678. https://doi.org/10.3390/s22041678
APA StyleHuang, C., Zhang, F., Xu, Z., & Wei, J. (2022). The Diverse Gait Dataset: Gait Segmentation Using Inertial Sensors for Pedestrian Localization with Different Genders, Heights and Walking Speeds. Sensors, 22(4), 1678. https://doi.org/10.3390/s22041678