Evaluation of a New Simplified Inertial Sensor Method against Electrogoniometer for Measuring Wrist Motion in Occupational Studies
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Measurement Systems
2.3. Experimental Design
2.4. Signal Processing and Statistical Analysis
3. Results
4. Discussion
Limitations and Future Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bureau of Labor Statistics. Nonfatal Occupational Injuries and Illnesses Requiring Days Away from Work, 2015. 2016. Available online: https://www.bls.gov/news.release/pdf/osh2.pdf (accessed on 29 December 2021).
- Barr, A.E.; Barbe, M.F.; Clark, B.D. Work-related musculoskeletal disorders of the hand and wrist: Epidemiology, pathophysiology, and sensorimotor changes. J. Orthop. Sports Phys. Ther. 2004, 34, 610–627. [Google Scholar] [CrossRef] [PubMed]
- PKeir, J.; Zuniga, A.F.; Mulla, D.M.; Somasundram, K.G. Relationships and Mechanisms Between Occupational Risk Factors and Distal Upper Extremity Disorders. Hum. Factors 2021, 63, 5–31. [Google Scholar] [CrossRef]
- van Rijn, R.M.; Huisstede, B.M.A.; Koes, B.W.; Burdorf, A. Associations between work-related factors and the carpal tunnel syndrome-A systematic review. Scand. J. Work. Environ. Health 2009, 35, 19–36. [Google Scholar] [CrossRef] [Green Version]
- Muggleton, J.M.; Allen, R.; Chappell, P.H. Hand and arm injuries associated with repetitive manual work in industry: A review of disorders, risk factors and preventive measures. Ergonomics 1999, 42, 714–739. [Google Scholar] [CrossRef] [PubMed]
- Bernard, B.P.; Putz-Anderson, V. Musculoskeletal Disorders and Workplace Factors A Critical Review of Epidemiologic Evidence for Work-Related Musculoskeletal Disorders of the Neck, Upper Extremity, and Low Back. 1997. Available online: http://www.cdc.gov/niosh/docs/97-141/ (accessed on 29 December 2021).
- Epstein, S.; Sparer, E.H.; Tran, B.N.; Ruan, Q.Z.; Dennerlein, J.T.; Singhal, D.; Lee, B.T. Prevalence of Work-Related Musculoskeletal Disorders Among Surgeons and Interventionalists: A Systematic Review and Meta-analysis. JAMA Surg. 2018, 153, e174947. [Google Scholar] [CrossRef] [PubMed]
- Kozak, A.; Schedlbauer, G.; Wirth, T.; Euler, U.; Westermann, C.; Nienhaus, A. Association between work-related biomechanical risk factors and the occurrence of carpal tunnel syndrome: An overview of systematic reviews and a meta-analysis of current research. BMC Musculoskelet. Disord. 2015, 16, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Govaerts, R.; Tassignon, B.; Ghillebert, J.; Serrien, B.; De Bock, S.; Ampe, T.; El Makrini, I.; Vanderborght, B.; Meeusen, R.; De Pauw, K. Prevalence and incidence of work-related musculoskeletal disorders in secondary industries of 21st century Europe: A systematic review and meta-analysis. BMC Musculoskelet. Disord. 2021, 22, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Takala, E.P.; Pehkonen, I.; Forsman, M.; Hansson, G.Å.; Mathiassen, S.E.; Neumann, W.P.; Sjøgaard, G.; Veiersted, K.B.; Westgaard, R.H.; Winkel, J. Systematic evaluation of observational methods assessing biomechanical exposures at work. Scand. J. Work. Environ. Health 2010, 36, 3–24. [Google Scholar] [CrossRef] [Green Version]
- Lowe, B.D. Accuracy and validity of observational estimates of wrist and forearm posture. Ergonomics 2004, 47, 527–554. [Google Scholar] [CrossRef]
- Rhén, I.M.; Forsman, M. Inter- and intra-rater reliability of the OCRA checklist method in video-recorded manual work tasks. Appl. Ergon. 2020, 84, 103025. [Google Scholar] [CrossRef]
- Bao, S.; Spielholz, P.; Howard, N.; Silverstein, B. Quantifying repetitive hand activityfor epidemiological research on musculoskeletal disorders–part I: Individual exposure assessment. Ergonomics 2007, 49, 361–380. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Lu, K.; Diaz-Olivares, J.A.; Seoane, F.; Lindecrantz, K.; Forsman, M.; Abtahi, F.; Eklund, J.A. Towards Smart Work Clothing for Automatic Risk Assessment of Physical Workload. IEEE Access 2018, 6, 40059–40072. [Google Scholar] [CrossRef]
- Forsman, M. The search for practical and reliable observational or technical risk assessment methods to be used in prevention of musculoskeletal disorders. Agron. Res. 2017, 15, 680–686. [Google Scholar]
- Hansson, G.Å.; Balogh, I.; Byström, J.U.; Ohlsson, K.; Nordander, C.; Asterland, P.; Sjölander, S.; Rylander, L.; Winkel, J.; Skerfving, S.; et al. Questionnaire versus direct technical measurements in assessing postures and movements of the head, upper back, arms and hands. Scand. J. Work. Environ. Health 2001, 27, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; D’Souza, C. A narrative review on contemporary and emerging uses of inertial sensing in occupational ergonomics. Int. J. Ind. Ergon. 2020, 76, 102937. [Google Scholar] [CrossRef] [PubMed]
- Robert-Lachaine, X.; Mecheri, H.; Larue, C.; Plamondon, A. Accuracy and repeatability of single-pose calibration of inertial measurement units for whole-body motion analysis. Gait Posture 2017, 54, 80–86. [Google Scholar] [CrossRef]
- Robert-Lachaine, X.; Mecheri, H.; Muller, A.; Larue, C.; Plamondon, A. Validation of a low-cost inertial motion capture system for whole-body motion analysis. J. Biomech. 2020, 99, 109520. [Google Scholar] [CrossRef]
- Schall, M.C.; Fethke, N.B.; Chen, H.; Gerr, F. A comparison of instrumentation methods to estimate thoracolumbar motion in field-based occupational studies. Appl. Ergon. 2015, 48, 224–231. [Google Scholar] [CrossRef]
- Kim, S.; Nussbaum, M.A. Performance evaluation of a wearable inertial motion capture system for capturing physical exposures during manual material handling tasks. Ergonomics 2013, 56, 314–326. [Google Scholar] [CrossRef]
- Fan, X.; Lind, C.M.; Rhen, I.M.; Forsman, M. Effects of sensor types and angular velocity computational methods in field measurements of occupational upper arm and trunk postures and movements. Sensors 2021, 21, 5527. [Google Scholar] [CrossRef]
- Seidel, D.H.; Heinrich, K.; Hermanns-Truxius, I.; Ellegast, R.P.; Barrero, L.H.; Rieger, M.A.; Steinhilber, B.; Weber, B. Assessment of work-related hand and elbow workloads using measurement-based TLV for HAL. Appl. Ergon. 2021, 92, 103310. [Google Scholar] [CrossRef] [PubMed]
- Schoenmarklin, R.W.; Marras, W.S.; Leurgans, S.E. Industrial wrist motions and incidence of hand/wrist cumulative trauma disorders. Ergonomics 1994, 37, 1449–1459. [Google Scholar] [CrossRef] [PubMed]
- Balogh, I.; Arvidsson, I.; Björk, J.; Hansson, G.Å.; Ohlsson, K.; Skerfving, S.; Nordander, C. Work-related neck and upper limb disorders-Quantitative exposure-response relationships adjusted for personal characteristics and psychosocial conditions. BMC Musculoskelet. Disord. 2019, 20, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidel, D.H.; Ditchen, D.M.; Hoehne-Hückstädt, U.M.; Rieger, M.A.; Steinhilber, B. Quantitative measures of physical risk factors associated with work-related musculoskeletal disorders of the elbow: A systematic review. Int. J. Environ. Res. Public Health 2019, 6, 130. [Google Scholar] [CrossRef] [Green Version]
- Nordander, C.; Hansson, G.Å.; Ohlsson, K.; Arvidsson, I.; Balogh, I.; Strömberg, U.; Rittner, R.; Skerfving, S. Exposure-response relationships for work-related neck and shoulder musculoskeletal disorders—Analyses of pooled uniform data sets. Appl. Ergon. 2016, 55, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Arvidsson, I.; Dahlqvist, C.; Enquist, H.; Nordander, C. mAction Levels for the Prevention of Work-Related Musculoskeletal Disorders in the Neck and Upper Extremities: A Proposal. Ann. Work. Expo. Health 2021, 65, 741–747. [Google Scholar] [CrossRef]
- Balogh, I.; Ohlsson, K.; Nordander, C.; Skerfving, S.; Hansson, G.Å. Precision of measurements of physical workload during standardized manual handling part III: Goniometry of the wrists. J. Electromyogr. Kinesiol. 2009, 19, 1005–1012. [Google Scholar] [CrossRef]
- Wirth, M.A.; Fischer, G.; Verdú, J.; Reissner, L.; Balocco, S.; Calcagni, M. Comparison of a New Inertial Sensor Based System with an Optoelectronic Motion Capture System for Motion Analysis of Healthy Human Wrist Joints. Sensors 2019, 19, 5297. [Google Scholar] [CrossRef] [Green Version]
- Lind, C.M.; Sandsjö, L.; Mahdavian, N.; Högberg, D.; Hanson, L.; Olivares, J.A.D.; Yang, L.; Forsman, M. Prevention of Work: Related Musculoskeletal Disorders Using Smart Workwear–The Smart Workwear Consortium. Adv. Intell. Syst. Comput. 2018, 876, 477–483. [Google Scholar] [CrossRef]
- Yang, L.; Grooten, W.J.A.; Forsman, M. An iPhone application for upper arm posture and movement measurements. Appl. Ergon. 2017, 65, 492–500. [Google Scholar] [CrossRef]
- Chen, H.; Schall, M.C.; Fethke, N.B. Measuring upper arm elevation using an inertial measurement unit: An exploration of sensor fusion algorithms and gyroscope models. Appl. Ergon. 2020, 89, 103187. [Google Scholar] [CrossRef] [PubMed]
- Robert-Lachaine, X.; Mecheri, H.; Larue, C.; Plamondon, A. Effect of local magnetic field disturbances on inertial measurement units accuracy. Appl. Ergon. 2017, 63, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Hansson, G.-Å.; Balogh, I.; Ohlsson, K.; Rylander, L.; Skerfving, S. Goniometer measurement and computer analysis of wrist angles and movements applied to occupational repetitive work. J. Electromyogr. Kinesiol. 1996, 6, 23–35. [Google Scholar] [CrossRef]
- Li, Z.M.; Kuxhaus, L.; Fisk, J.A.; Christophel, T.H. Coupling between wrist flexion-extension and radial-ulnar deviation. Clin. Biomech. 2005, 20, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Hansson, G.Å.; Balogh, I.; Ohlsson, K.; Skerfving, S. Measurements of wrist and forearm positions and movements: Effect of, and compensation for, goniometer crosstalk. J. Electromyogr. Kinesiol. 2004, 14, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, P.; Johnson, P.W. Comparison of measurement accuracy between two types of wrist goniometer systems. Appl. Ergon. 2001, 32, 599–607. [Google Scholar] [CrossRef]
- Buchholz, B.; Wellman, H. Practical operation of a biaxial goniometer at the wrist joint. Hum. Factors 1997, 39, 119–129. [Google Scholar] [CrossRef]
- Arvidsson, I.; Åkesson, I.; Hansson, G.Å. Wrist movements among females in a repetitive, non-forceful work. Appl. Ergon. 2003, 34, 309–316. [Google Scholar] [CrossRef]
°/s | Percentile | Individual Method, Mean (SD) | Comparison of Methods, MAEs (SD) | |||
---|---|---|---|---|---|---|
Goniometer | IMUnorm | IMUflex | IMUnorm−Goniometer | IMUflex−Goniometer | ||
Flexion/Extension | ||||||
30 BPM | 10th | 4.2 (3.2) | 4.8 (2.2) | 4.2 (3.1) | 1.4 (0.9) | 0.3 (0.2) |
50th | 40.7 (17.5) | 36.9 (15.5) | 39.4 (16.9) | 4.1 (2.6) | 1.4 (1.2) | |
90th | 125.7 (52.0) | 116.8 (48.5) | 118.6 (47.2) | 9.0 (4.2) | 7.5 (6.4) | |
60 BPM | 10th | 4.0 (4.7) | 4.3 (3.3) | 4.0 (5.1) | 1.3 (0.8) | 0.4 (0.5) |
50th | 72.1 (40.2) | 64.8 (37.0) | 69.4 (39.7) | 7.8 (5.5) | 3.1 (2.8) | |
90th | 233.1 (102.6) | 217.9 (98.0) | 219.2 (92.3) | 15.2 (7.5) | 14.3 (12.1) | |
90 BPM | 10th | 6.6 (9.2) | 5.4 (6.5) | 6.8 (10.5) | 2.0 (3.0) | 1.0 (1.4) |
50th | 90.6 (63.7) | 81.4 (60.1) | 87.8 (63.3) | 10.1 (7.7) | 4.1 (3.2) | |
90th | 322.0 (145.7) | 300.8 (143.3) | 301.8 (136.7) | 21.4 (12.1) | 20.2 (14.1) | |
Radial/Ulnar Deviation | ||||||
30 BPM | 10th | 0.5 (0.2) | 1.4 (0.6) | 0.5 (0.2) | 0.9 (0.5) | 0.1 (0.1) |
50th | 4.2 (1.6) | 12.0 (6.1) | 3.7 (1.5) | 7.9 (5.2) | 0.8 (0.7) | |
90th | 16.9 (7.1) | 51.2 (19.2) | 16.1 (7.4) | 34.3 (16.1) | 2.9 (2.9) | |
60 BPM | 10th | 0.9 (0.5) | 1.7 (0.8) | 0.8 (0.3) | 0.9 (0.7) | 0.2 (0.2) |
50th | 7.9 (4.3) | 22.3 (13.2) | 7.2 (3.4) | 14.4 (11.9) | 1.4 (1.9) | |
90th | 37.0 (35.9) | 101.2 (35.0) | 39.1 (35.7) | 65.1 (32.5) | 6.8 (7.6) | |
90 BPM | 10th | 0.9 (0.7) | 2.0 (1.2) | 0.9 (0.7) | 1.1 (0.7) | 0.2 (0.1) |
50th | 7.9 (3.7) | 23.4 (18.0) | 8.1 (4.1) | 15.7 (14.9) | 1.3 (1.2) | |
90th | 33.5 (16.0) | 130.0 (55.5) | 38.5 (22.3) | 98.5 (47.9) | 9.0 (12.4) | |
Pronation/Supination | ||||||
30 BPM | 10th | 1.1 (0.5) | 1.3 (0.8) | 0.7 (0.2) | 0.3 (0.3) | 0.5 (0.3) |
50th | 10.2 (5.0) | 26.2 (10.1) | 5.0 (1.3) | 16.1 (8.1) | 5.2 (4.5) | |
90th | 39.5 (15.4) | 77.2 (29.2) | 18.9 (6.6) | 37.7 (23.8) | 20.6 (12.8) | |
60 BPM | 10th | 1.6 (1.0) | 1.9 (1.9) | 1.2 (0.7) | 0.7 (1.0) | 0.5 (0.4) |
50th | 18.5 (10.0) | 46.8 (23.1) | 10.1 (7.4) | 29.1 (19.0) | 8.6 (8.3) | |
90th | 103.6 (100.8) | 170.1 (89.6) | 61.3 (105.3) | 69.7 (49.3) | 42.3 (26.7) | |
90 BPM | 10th | 1.6 (1.5) | 2.0 (2.0) | 1.0 (0.7) | 0.6 (0.9) | 0.7 (0.9) |
50th | 19.1 (10.5) | 51.4 (32.7) | 9.6 (5.0) | 32.3 (24.7) | 9.5 (6.4) | |
90th | 101.4 (54.4) | 197.3 (83.6) | 41.3 (17.2) | 96.6 (50.8) | 60.1 (45.7) |
°/s | Percentile | Individual Method, Mean (SD) | Comparison of Methods, MAEs (SD) | |||
---|---|---|---|---|---|---|
Goniometer | IMUnorm | IMUflex | IMUnorm−Goniometer | IMUflex−Goniometer | ||
Blow-drying hair | 10th | 5.2 (4.0) | 5.8 (4.2) | 6.6 (4.5) | 1.4 (1.7) | 1.4 (1.6) |
50th | 36.3 (29.9) | 37.8 (24.0) | 40.5 (28.4) | 10.6 (12.7) | 5.8 (6.0) | |
90th | 111.7 (58.8) | 105.9 (44.3) | 115.6 (54.9) | 24.6 (26.0) | 10.8 (10.3) | |
Folding paper planes | 10th | 3.1 (1.0) | 2.6 (1.0) | 2.9 (1.1) | 0.6 (0.5) | 0.3 (0.2) |
50th | 23.1 (5.9) | 18.9 (6.2) | 22.0 (6.0) | 4.4 (2.3) | 1.6 (1.2) | |
90th | 93.0 (18.7) | 74.9 (21.9) | 92.0 (22.7) | 19.1 (9.5) | 7.9 (5.1) | |
Sorting mail | 10th | 8.9 (1.5) | 7.4 (2.4) | 8.5 (1.7) | 2.2 (1.6) | 0.8 (0.4) |
50th | 51.8 (9.1) | 45.6 (9.8) | 51.1 (8.9) | 8.1 (8.4) | 3.6 (2.9) | |
90th | 145.4 (19.9) | 122.4 (21.8) | 140.5 (23.0) | 25.8 (13.5) | 7.9 (6.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manivasagam, K.; Yang, L. Evaluation of a New Simplified Inertial Sensor Method against Electrogoniometer for Measuring Wrist Motion in Occupational Studies. Sensors 2022, 22, 1690. https://doi.org/10.3390/s22041690
Manivasagam K, Yang L. Evaluation of a New Simplified Inertial Sensor Method against Electrogoniometer for Measuring Wrist Motion in Occupational Studies. Sensors. 2022; 22(4):1690. https://doi.org/10.3390/s22041690
Chicago/Turabian StyleManivasagam, Karnica, and Liyun Yang. 2022. "Evaluation of a New Simplified Inertial Sensor Method against Electrogoniometer for Measuring Wrist Motion in Occupational Studies" Sensors 22, no. 4: 1690. https://doi.org/10.3390/s22041690
APA StyleManivasagam, K., & Yang, L. (2022). Evaluation of a New Simplified Inertial Sensor Method against Electrogoniometer for Measuring Wrist Motion in Occupational Studies. Sensors, 22(4), 1690. https://doi.org/10.3390/s22041690