Reconstructing the Spatial Parameters of a Laser Beam Using the Transport-of-Intensity Equation
Abstract
:1. Introduction
2. Methods and Approaches
2.1. ISO Method
2.2. TIE Method (Proposed Method)
3. Experimental Part
4. Results and Discussion
4.1. ISO Method
4.2. TIE Method (Proposed Method)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abramochkin, E.G.; Volostnikov, V.G.; Kotlyar, V.V.; Malov, A.I. Restoration of the phase of the light field. Differential approach. Bull. Lebedev Phys. Inst. 1987, 3, 7. [Google Scholar]
- Aksenov, V.P. Phase problem, wavefront dislocations, and an equation for the intensity of a two-dimensional optical field. Atmos. Ocean. Opt. 1995, 8, 1319. [Google Scholar]
- Kuznetsova, T.I. On the phase retrieval problem in optics. Sov. Phys. Usp. 1988, 31, 364–371. [Google Scholar] [CrossRef]
- Venediktov, V.Y.; Gorelaya, A.V.; Krasin, G.K.; Odinokov, S.B.; Sevryugin, A.A.; Shalymov, E.V. Holographic wavefront sensors. Quantum Electron. 2020, 50, 614–622. [Google Scholar] [CrossRef]
- Krasin, G.; Kovalev, M.; Stsepuro, N.; Ruchka, P.; Odinokov, S. Lensless Scheme for Measuring Laser Aberrations Based on Computer-Generated Holograms. Sensors 2020, 20, 4310. [Google Scholar] [CrossRef] [PubMed]
- Volostnikov, V.G. Methods for the Analysis and Synthesis of Coherent Light Fields; Fizmatlit: Moscow, Russia, 2014. [Google Scholar]
- Zhang, J.; Chen, Q.; Sun, J.; Tian, L.; Zuo, C. On a universal solution to the transport-of-intensity equation. Opt. Lett. 2020, 45, 3649. [Google Scholar] [CrossRef]
- Martinez-Carranza, J.; Falaggis, K.; Kozacki, T.; Malgorzata, K. Effect of Imposed Boundary Conditions on the Accuracy of Transport of Intensity Equation based Solvers. In Proceedings of the SPIE-The International Society for Optical Engineering, San Diego, CA, USA, 13 May 2013; Volume 8789. [Google Scholar]
- Saita, Y.; Shinto, H.; Nomura, T. Holographic Shack–Hartmann wavefront sensor based on the correlation peak displacement detection method for wavefront sensing with large dynamic range. Optica 2015, 2, 411–415. [Google Scholar] [CrossRef]
- ISO 11146–1/2/3. International Organization for Standardization: Geneva, Switzerland, 2005.
- Ross, T.S. Laser Beam Quality Metrics; SPIE Press: Bellinghamt, DC, USA, 2013. [Google Scholar]
- Schäfer, B.; Lübbecke, M.; Mann, K. Hartmann-Shack wave front measurements for real time determination of laser beam propagation parameters. Rev. Sci. Instrum. 2006, 77, 053103. [Google Scholar] [CrossRef]
- Du, Y.; Fu, Y.; Zheng, L. Complex amplitude reconstruction for dynamic beam quality M2 factor measurement with self-referencing interferometer wavefront sensor. Appl. Opt. 2016, 55, 10180–10186. [Google Scholar] [CrossRef]
- Ji, K.H.; Hou, T.R.; Li, J.B.; Meng, L.Q.; Han, Z.G.; Zhu, R.H. Fast measurement of the laser beam quality factor based on phase retrieval with a liquid lens. Appl. Opt. 2019, 58, 2765–2772. [Google Scholar] [CrossRef]
- Kaiser, T.; Flamm, D.; Schröter, S.; Duparré, M. Complete modal decomposition for optical fibers using CGH-based correlation filters. Opt. Express 2009, 17, 9347–9356. [Google Scholar] [CrossRef] [PubMed]
- Pinnell, J.; Nape, I.; Sephton, B.; Cox, M.A.; Rodríguez-Fajardo, V.; Forbes, A. Modal analysis of structured light with spatial light modulators: A practical tutorial. J. Opt. Soc. Am. A 2020, 37, C146–C160. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Ma, J.; Zhu, R.; Ba, T.; Zuo, C.; Chen, F.; Dou, J.T.; Wei, C.; Zhou, W. Real-time complex amplitude reconstruction method for beam quality M2 factor measurement. Opt. Express 2017, 25, 20142–20155. [Google Scholar] [CrossRef] [PubMed]
- Merx, S.; Stock, J.; Widiasari, F.R.; Gross, H. Beam characterization by phase retrieval solving the transport-of-intensity-equation. Opt. Express 2020, 28, 20898–20907. [Google Scholar] [CrossRef]
- Gritsenko, I.; Kovalev, M.; Krasin, G.; Konoplyov, M.; Stsepuro, N. Computational Method for Wavefront Sensing Based on Transport-of-Intensity Equation. Photonics 2021, 8, 177. [Google Scholar] [CrossRef]
- Zuo, C.; Li, J.; Sun, J.; Fan, Y.; Zhang, J.; Lu, L.; Zhang, R.; Wang, B.; Huang, L.; Chen, Q. Transport of intensity equation: A tutorial. Opt. Lasers Eng. 2020, 135, 106187. [Google Scholar] [CrossRef]
- Basunia, M.; Banerjee, P.P.; Abeywickrema, U.; Poon, T.C.; Zhang, H. Recursive method for phase retrieval using transport of intensity and its applications. Appl. Opt. 2022, 55, 9546–9554. [Google Scholar] [CrossRef]
- Nosov, P.A.; Piskunov, D.E.; Shirankov, A.F. Combined laser variosystems paraxial design for longitudinal movement of a Gaussian beam waist. Opt. Express 2020, 28, 5105–5118. [Google Scholar] [CrossRef]
- Nosov, P.A.; Shirankov, A.F.; Grigoryants, A.G.; Tret’yakov, R.S. Investigation of the spatial structure of a high-power fiber laser beam. J. Phys. Conf. Ser. 2015, 584, 012006. [Google Scholar] [CrossRef]
- Teague, M.R. Deterministic phase retrieval: A Green’s function solution. J. Opt. Soc. Am. 1983, 73, 1434–1441. [Google Scholar] [CrossRef]
- Allen, L.J.; Oxley, M.P. Phase retrieval from series of images obtained by defocus variation. Opt. Commun. 2001, 199, 65–75. [Google Scholar] [CrossRef]
Parameters | Equations |
---|---|
Radius of the laser beam waist | |
Position of the beam waist relative to the selected reference plane (taking into account the sign rule adopted in optics) | |
Rayleigh length | |
Angular divergence of the beam | |
BPP |
Parameters | X0Z | Y0Z | Comment |
---|---|---|---|
Central wavelength, (nm) | 1031.2 | ||
Beam diameter, (mm) | 1.627 | 1.576 | at 60 mm from exit |
Beam ellipticity, (%) | 3 | at 60 mm from exit | |
Quality parameter | 1.075 | 1.042 | |
Astigmatism (%) | 0.2 | ||
Beam divergence, (mrad) | 1.424 | 1.383 | full angle |
Parameters | TIE (X0Z) | TIE (Y0Z) | ISO 11146 (X0Z) | ISO 11146 (Y0Z) |
---|---|---|---|---|
Radius of the laser beam waist (mm) | 0.064 | 0.059 | 0.061 | 0.053 |
Beam waist position (mm) | 83.087 | 77.014 | 83.306 | 76.686 |
Rayleigh length (mm) | 21.606 | 17.576 | 21.785 | 17.251 |
Quality parameter | 1.066 | 1.051 | 1.061 | 1.047 |
Angular divergence of the beam (mrad) | 0.55 | 0.58 | 0.482 | 0.485 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovalev, M.; Gritsenko, I.; Stsepuro, N.; Nosov, P.; Krasin, G.; Kudryashov, S. Reconstructing the Spatial Parameters of a Laser Beam Using the Transport-of-Intensity Equation. Sensors 2022, 22, 1765. https://doi.org/10.3390/s22051765
Kovalev M, Gritsenko I, Stsepuro N, Nosov P, Krasin G, Kudryashov S. Reconstructing the Spatial Parameters of a Laser Beam Using the Transport-of-Intensity Equation. Sensors. 2022; 22(5):1765. https://doi.org/10.3390/s22051765
Chicago/Turabian StyleKovalev, Michael, Iliya Gritsenko, Nikita Stsepuro, Pavel Nosov, George Krasin, and Sergey Kudryashov. 2022. "Reconstructing the Spatial Parameters of a Laser Beam Using the Transport-of-Intensity Equation" Sensors 22, no. 5: 1765. https://doi.org/10.3390/s22051765
APA StyleKovalev, M., Gritsenko, I., Stsepuro, N., Nosov, P., Krasin, G., & Kudryashov, S. (2022). Reconstructing the Spatial Parameters of a Laser Beam Using the Transport-of-Intensity Equation. Sensors, 22(5), 1765. https://doi.org/10.3390/s22051765