A Deconvolutional Deblurring Algorithm Based on Short- and Long-Exposure Images
Abstract
:1. Introduction
2. Design Principle and Framework
Basic Model of the Proposed Method
- Part 1: kernel estimation (introduced in Section 3.1).
- Part 2: original image estimation by the part 1 result (introduced in Section 3.2)
3. Main Works: Estimate Blur Kernel and Restore the Image Using Priori Side Information
3.1. Kernel Estimation in This Layer: Based on a Priori Filter of Short-Exposure Images to Build the Model
3.1.1. Calculate the Priori Filter Iterative Image
3.1.2. Iterative Image Estimation
3.1.3. Iterative Kernel Estimation Algorithm
3.2. Image Deblur: Deconvolutional Restoration Based on Relative Gradient Operator
4. Results and Discussion
4.1. Group 1: Simulation Experiment
4.2. Group 2: Live Shot Group, Experiment 1
4.3. Group 2: Live Shot Group Experiment 2
4.4. Group 3: MTF Measurement Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 4th ed.; Pearson: London, UK, 2018. [Google Scholar]
- Catanzaro, B.E.; Thomas, J.A.; Cohen, E.J. Comparison of full-aperture interferometry to subaperture stitched interferometry for a large-diameter fast mirror. Optomech. Des. Eng. 2001, 4444, 224–237. [Google Scholar]
- Freeman, W.T.; Fergus, R.D.; Singh, B.; Hertzmann, A.P.; Roweis, S.T. Removing Camera Shake from a Single Photograph Using Statistics of a Natural Image. U.S. Patent 7,616,826, 10 November 2019. [Google Scholar]
- Bishop, T.E.; Babacan, S.D.; Amizic, B.; Katsaggelos, A.K.; Chan, T.; Molina, R. Blind Image Deconvolution: Problem regaluration and existing approaches. Blind Image Deconvol. Theor. Appl. 2007, 1, 1–41. [Google Scholar]
- Qi, S.; Jia, J.; Agarwala, A. High-quality motion deblurring from a single image. Acm Trans. Graph. 2008, 27, 1–10. [Google Scholar]
- Pan, Z.; Tan, Z.; Lv, Q.B. Improved joint deblurring algorithm in Fourier domain and wavelet domain. Acta Photonica Sin. 2017, 46, 171–178. (In Chinese) [Google Scholar]
- Yang, L.; Ji, H. A Variational EM Framework With Adaptive Edge Selection for Blind Motion Deblurring. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Li, W.; Zhang, J.; Dai, Q. Exploring aligned complementary image pair for blind motion deblurring. In Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA, 20–25 June 2011. [Google Scholar]
- Li, Z.; Deshpande, A.; Xin, C. Denoising vs. deblurring: HDR imaging techniques using moving cameras. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010. [Google Scholar]
- Roubek, F.; Flusser, J. Resolution enhancement via probabilistic deconvolution of multiple degraded images. Pattern Recognit. Lett. 2005, 27, 287–293. [Google Scholar] [CrossRef]
- Yuan, L.; Sun, J.; Quan, L.; Shum, H.Y. Image deblurring with blurred noisy image pairs. In ACM SIGGRAPH 2007 Papers, Proceedings of the SIGGRAPH07: Special Interest Group on Computer Graphics and Interactive Techniques Conference, San Diego, CA, USA, 5–9 August 2007; Association for Computing Machinery: New York, NY, USA, 2007. [Google Scholar]
- Bentum, M.J.; Arendse, R.G.; Slump, C.H.; Mistretta, C.A.; Peppler, W.W.; Zink, F.E. Design and realization of high speed single exposure dual energy image processing. In Proceedings of the Fifth Annual IEEE Symposium on Computer-Based Medical Systems, Durham, NC, USA, 14–17 June 1992. [Google Scholar]
- Gao, Z.; Yao, S.; Yang, C.; Xu, J. A Dynamic Range Extension Technique for CMOS Image Sensors With In-Pixel Dual Exposure Synthesis. IEEE Sens. J. 2015, 15, 3265–3273. [Google Scholar] [CrossRef]
- Vengsarkar, A.M.; Zhong, Q.; Inniss, D.; Reed, W.A.; Lemaire, P.J.; Kosinski, S.G. Birefringence reduction in side-written photoinduced fiber devices by a dual-exposure method. Opt. Lett. 1994, 19, 1260–1262. [Google Scholar] [CrossRef]
- Tallón, M.; Javier, M.A.; Babacan, S.D.; Katsaggelos, A.K. Full Length Article Space-variant blur deconvolution and denoising in the dual exposure problem. Inf. Fusion 2013, 14, 396–409. [Google Scholar] [CrossRef]
- Li, X.C.; Li, H.K.; Song, B. Application of energy functional regularization model in image restoration. J. Image Graph. 2014, 19, 1247–1259. (In Chinese) [Google Scholar]
- Tallón, M.; Mateos, J.; Babacan, S.D.; Molina, R.; Katsaggelos, A.K. Space-variant kernel deconvolution for dual exposure problem. In Proceedings of the 19th European Signal Processing Conference, Barcelona, Spain, 29 August–2 September 2011. [Google Scholar]
- Zhang, G.M.; Gao, S.; Yin, Z.S. Motion blur restoration method of remote sensing image based on fuzzy image and noise image. Electron. Des. Eng. 2017, 25, 82–86. [Google Scholar]
- Cui, G.; Hua, W.; Zhao, J.; Gong, X.; Zhu, L. A motion deblurring method with long/short exposure image pairs. In International Conference on Optical Instruments and Technology 2017: Optoelectronic Imaging/Spectroscopy and Signal Processing Technology, Proceedings of the International Conference on Optical Instruments and Technology 2017, Beijing, China, 28–30 October 2017; International Society for Optics and Photonics: Bellingham, DA, USA, 2018. [Google Scholar]
- Leutenegger, S.; Chli, M.; Siegwart, R.Y. BRISK: Binary Robust invariant scalable keypoints. In Proceedings of the International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011. [Google Scholar]
- Djurovi, I. BM3D filter in salt-and-pepper noise removal. EURASIP J. Image Video Process. 2016, 2016, 13. [Google Scholar] [CrossRef] [Green Version]
- Osher, S.; Burger, M.; Goldfarb, D.; Xu, J.; Yin, W. An iterative regularization method for total variation-based image restoration. Siam J. Multiscale Model. Simul. 2005, 4, 460–489. [Google Scholar] [CrossRef]
- Xiao, C.; Gan, J. Fast image dehazing using guided joint bilateral filter. Vis. Comput. 2012, 28, 713–721. [Google Scholar] [CrossRef]
- Xu, Z.; Fugen, Z.; Bei, X.Z. Blind deconvolution using a nondimensional Gaussianity measure. In Proceedings of the 2013 IEEE International Conference on Image Processing, Melbourne, Australia, 15–18 September 2013. [Google Scholar]
- Beck, A.; Teboulle, M. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. Siam J. Imaging Hences 2009, 2, 183–202. [Google Scholar] [CrossRef] [Green Version]
- Nocedal, J.; Wright, S. Numerical Optimization. Springer Sci. 1999, 35, 7. [Google Scholar]
- Zhou, X.; Mateos, J.; Zhou, F.; Molina, R.; Katsaggelos, A.K. Variational Dirichlet Blur Kernel Estimation. IEEE Trans. Image Process. 2015, 24, 5127–5139. [Google Scholar] [CrossRef]
- Krishnan, D.; Fergus, R. Fast image deconvolution using Hyper-Laplacian prioris. Adv. Neural Inf. Process. Syst. 2009, 22, 1033–1041. [Google Scholar]
- Levin, A.; Fergus, R.; Durand, F.; Freeman, W.T. Image and Depth from a Conventional Camera with a Coded Aperture. ACM Trans. Graph. (TOG) 2007, 26, 70-es. [Google Scholar] [CrossRef]
- Mumford, D.; Gidas, B. Stochastic Models for Generic Images. Q. Appl. Math. 2001, 59, 85–111. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.C.; Shen, J.H.; Chen, W.B. Image Processing and Analysis: Variational, PDE, Wavelet and Stochastic Methods; Science Press: Beijing, China, 2011; pp. 15–43. [Google Scholar]
- Kloft, M.; Brefeld, U.; Sonnenburg, S.; Zien, A. Lp-Norm Multiple Kernel Learning. J. Mach. Learn. Res. 2011, 12, 953–997. [Google Scholar]
- Babacan, S.D.; Molina, R.; Do, M.N.; Katsaggelos, A.K. Bayesian Blind Deconvolution with General Sparse Image Prioris. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2012; pp. 341–355. [Google Scholar]
- Giusti, E.; Williams, G.H. Minimal Surfaces and Functions of Bounded Variation; Birkhäuser Verlag: Basel, Switzerland, 1984. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R (Springer Texts in Statistics); Springer: New York, NY, USA, 2013. [Google Scholar]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Found. Trends Mach. Learn. 2010, 3, 1–122. [Google Scholar] [CrossRef]
- Faisal, M.; Lanterman, A.D.; Snyder, D.L.; White, R.L. Implementation of a modified Richardson-Lucy method for image restoration on a massively parallel computer to compensate for space-variant point spread of a charge-coupled-device camera. J. Opt. Soc. Am. A 1995, 12, 2593–2603. [Google Scholar] [CrossRef]
- Cui, G.; Zhao, J.; Gao, X.; Feng, H.; Chen, Y. High quality image-pair-based deblurring method using edge mask and improved residual deconvolution. Opt. Rev. 2017, 24, 128–138. [Google Scholar] [CrossRef]
- ISO 122333:2017; Photography Electronic Still Picture Imaging Resolution and Spatial Frequency Responses. ISO: Geneva, Switzerland, 2017.
- Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a “Completely Blind” Image Quality Analyzer. IEEE Signal Processing Lett. 2013, 20, 209–212. [Google Scholar] [CrossRef]
- Narvekar, N.D.; Karam, L.J. A No-Reference Image Blur Metric Based on the Cumulative Probability of Blur Detection (CPBD). IEEE Trans. Image Process. 2011, 20, 2678–2683. [Google Scholar] [CrossRef]
The Steps of the Flow |
---|
Input: , , and |
1. Conduct image d-sampling and establish an image pyramid consisting of n layers. |
2. Estimate the convolution kernel at the current layer. |
3. Update the fidelity term and regularization term through the united filtering algorithm. |
4. Estimate the iterative image. |
5. Estimate the convolution kernel. |
6. Interpolate both kernel and image and extend to the next layer and repeat Step 2. |
7. End the estimation and return to kernel . |
Test Image | Evaluation Criterion | The Algorithm in the Literature [11] | The Algorithm in the Literature [24] | Proposed Algorithm |
---|---|---|---|---|
Convolutional kernel restoration result | SSIM | 0.6212 | 0.7835 | 0.8014 |
PSNR | 15.6289 | 16.3289 | 17.6426 |
Deconvolutional Algorithm Flow Based on Long- and Short-Exposure |
---|
Input: , and |
1. Calculate the initial value of regularization term |
2. Iteratively solve Equation (15) to acquire the initial solution |
3. Calculate the result of the RRL algorithm “” |
4. Calculate the result of GCRL algorithm “” |
5. Calculate the image details “” and acquire the restoration result “” |
Test Image | Evaluation Criterion | Algorithm in the Literature [27] | Proposed Algorithm |
---|---|---|---|
Convolutional kernel Restoration result | PSNR | 26.2330 | 26.5231 |
SSIM | 0.7519 | 0.7707 |
Test Image | Evaluation Criterion | Algorithm in the Literature [11] | Algorithm in the Literature [27] | Proposed Algorithm |
---|---|---|---|---|
Jet | SSIM | 0.9768 | 0.9892 | 0.9992 |
PSNR | 25.4328 | 25.4251 | 26.8518 |
Test Image | Algorithm in the Literature [11] | Algorithm in the Literature [27] | Proposed Algorithm |
---|---|---|---|
Image 1 | 144.4002 | 145.6224 | 159.2353 |
Image 2 | 144.8377 | 152.0045 | 157.8592 |
Image 3 | 140.7298 | 147.0867 | 153.9975 |
Image 4 | 117.0562 | 143.5941 | 144.8717 |
Test Image | Algorithm in the Literature [11] | Algorithm in the Literature [27] | Proposed Algorithm |
---|---|---|---|
Image 1 | 6.3098 | 6.7155 | 6.7284 |
Image 2 | 6.6004 | 6.6171 | 6.6784 |
Image 3 | 6.3357 | 6.7661 | 6.8571 |
Image 4 | 4.3364 | 6.3227 | 6.5260 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.; Tan, Z.; Lv, Q.; Huang, M. A Deconvolutional Deblurring Algorithm Based on Short- and Long-Exposure Images. Sensors 2022, 22, 1846. https://doi.org/10.3390/s22051846
Bai Y, Tan Z, Lv Q, Huang M. A Deconvolutional Deblurring Algorithm Based on Short- and Long-Exposure Images. Sensors. 2022; 22(5):1846. https://doi.org/10.3390/s22051846
Chicago/Turabian StyleBai, Yang, Zheng Tan, Qunbo Lv, and Min Huang. 2022. "A Deconvolutional Deblurring Algorithm Based on Short- and Long-Exposure Images" Sensors 22, no. 5: 1846. https://doi.org/10.3390/s22051846
APA StyleBai, Y., Tan, Z., Lv, Q., & Huang, M. (2022). A Deconvolutional Deblurring Algorithm Based on Short- and Long-Exposure Images. Sensors, 22(5), 1846. https://doi.org/10.3390/s22051846