High Density Resistive Array Readout System for Wearable Electronics
Abstract
:1. Introduction
2. System Description and Specification
2.1. Readout Board
2.1.1. Top PCB Electronics
2.1.2. Bottom PCB Electronics
2.2. Firmware and Algorithm
- An I2C block to communicate with the DPOT;
- A 16-bit Delta-Sigma ADC;
- Control registers to control the selection bits of 321 MUX;
- 2 1 analog MUX to combine the two 32 1 MUX outputs;
- A USB block to control the USB2.0 bus;
- A UART block to communicate with the BLE unit;
- A voltage digital-to-analog converter (VDAC) block to adjust the voltage of signals for UART transmit (TX) and receive (RX) lines.
2.3. User Interface: GUI and Smartphone Application
3. Results
3.1. Case Analysis 1: Test Setup with a Discrete Resistor Array and Electrical Testing Results
3.2. Case Analysis 2: Test Setup with a Force-Sensitive Resistor and Sensor Testing Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodrigues, J.J.; Segundo, D.B.D.R.; Junqueira, H.A.; Sabino, M.H.; Prince, R.M.; Al-Muhtadi, J.; De Albuquerque, V.H.C. Enabling Technologies for the Internet of Health Things. IEEE Access 2018, 6, 13129–13141. [Google Scholar] [CrossRef]
- Tao, X.M.; Feng, D.D. A Wearable, Wireless Electronic Interface for Textile Sensors Lin Shu. In Proceedings of the 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 30 May–2 June 2010; pp. 3104–3107. [Google Scholar]
- Alexandre, R.; Postolache, O. Wearable and IoT Technologies Application for Physical Rehabilitation. In Proceedings of the 2018 International Symposium in Sensing and Instrumentation in IoT Era (ISSI), Shanghai, China, 6–7 September 2018; pp. 1–6. [Google Scholar]
- Cheng, Y.; Wang, K.; Xu, H.; Li, T.; Jin, Q.; Cui, D. Recent developments in sensors for wearable device applications. Anal. Bioanal. Chem. 2021, 413, 6037–6057. [Google Scholar] [CrossRef] [PubMed]
- Paolini, G.; Shanawani, M.; Masotti, D.; Schreurs, D.M.M.-P.; Costanzo, A. Respiratory activity monitoring by a wearable 5.8 GHz SILO with energy harvesting capabilities. IEEE J. Electromagn. RF Microw. Med. Biol. 2021, 1–7. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, L.; Jiang, K.; Wei, Z.; Shen, G. Reviews of Wearable Healthcare Systems: Materials, Devices and System Integration. Mater. Sci. Eng. R Rep. 2020, 140, 100523. [Google Scholar] [CrossRef]
- Xu, C.; Yang, Y.; Gao, W. Skin-Interfaced Sensors in Digital Medicine: From Materials to Applications. Matter 2020, 2, 1414–1445. [Google Scholar] [CrossRef]
- Duan, L.; D’hooge, D.R.; Cardon, L. Recent Progress on Flexible and Stretchable Piezoresistive Strain Sensors: From Design to Application. Prog. Mater. Sci. 2020, 114, 100617. [Google Scholar] [CrossRef]
- Lee, K.; Chae, H.Y.; Park, K.; Lee, Y.; Cho, S.; Ko, H.; Kim, J.J. A Multi-Functional Physiological Hybrid-Sensing E-Skin Integrated Interface for Wearable IoT Applications. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1535–1544. [Google Scholar] [CrossRef]
- Lugoda, P.; Costa, J.C.; Pouryazdan, A.; Garcia-Garcia, L.A.; Roggen, D.; Munzenrieder, N. Evaluation of a pseudo zero-potential flexible readout circuit for resistive sensor matrixes. In Proceedings of the 2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Manchester, UK, 16–19 August 2020; pp. 1–4. [Google Scholar]
- Shu, L.; Tao, X.; Feng, D.D. A New Approach for Readout of Resistive Sensor Arrays for Wearable Electronic Applications. IEEE Sens. J. 2015, 15, 442–452. [Google Scholar]
- OQuigley, C.; Sabourin, M.; Coyle, S.; Connolly, J.; Condall, J.; Curran, K.; Corcoran, B.; Diamond, D. Characteristics of a Piezo-Resistive Fabric Stretch Sensor Glove for Home-Monitoring of Rheumatoid Arthritis. In Proceedings of the 2014 11th International Conference on Wearable and Implantable Body Sensor Networks Workshops, Zurich, Switzerland, 16–19 June 2014; pp. 23–26. [Google Scholar]
- Matsuda, R.; Mizuguchi, S.; Nakamura, F.; Endo, T.; Isoda, Y.; Inamori, G.; Ota, H. Highly Stretchable Sensing Array for Independent Detection of Pressure and Strain Exploiting Structural and Resistive Control. Sci. Rep. 2020, 10, 12666. [Google Scholar] [CrossRef]
- Alaferdov, A.V.; Savu, R.; Rackauskas, S.; Rackauskas, T.; Canesqui, M.A.; Moshkalev, S.A. Graphene Nanobelts Films for Highly Sensitive, Transparent and Flexible Pressure and Strain Resistive Sensors. In Proceedings of the 2014 IEEE 2nd International Conference on Emerging Electronics (ICEE), Bengaluru, India, 3–6 December 2014; pp. 1–4. [Google Scholar]
- Chen, Y.; Liang, X.; Assaad, M.; Heidari, H. Wearable Resistive-Based Gesture-Sensing Interface Bracelet. In Proceedings of the 2019 UK/China Emerging Technologies (UCET), Glasgow, UK, 21–22 August 2019; pp. 1–4. [Google Scholar]
- Wen, F.; He, T.; Liu, H.; Chen, H.-Y.; Zhang, T.; Lee, C. Advances in Chemical Sensing Technology for Enabling the Next-Generation Self-Sustainable Integrated Wearable System in the IoT Era. Nano Energy 2020, 78, 105155. [Google Scholar] [CrossRef]
- Karakaya, D.; Ulucan, O.; Turkan, M. Electronic nose and its applications: A survey. Int. J. Autom. Comput. 2020, 17, 179–209. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Zhang, H.; Sun, W.; Lu, N.; Yan, M.; Wu, Y.; Hua, Z.; Fan, S. Development of a low-cost portable electronic nose for cigarette brands identification. Sensors 2020, 20, 4239. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Liu, Y.; Li, Q. Recent progress in smart electronic nose technologies enabled with machine learning methods. Sensors 2021, 21, 7620. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Chen, H.; Gu, X.; Liu, B.; Wang, W.; Cao, Y.; Wu, F.; Zhou, C. Screen Printing as a Scalable and Low-Cost Approach for Rigid and Flexible Thin-Film Transistors Using Separated Carbon Nanotubes. ACS Nano 2014, 8, 12769–12776. [Google Scholar] [CrossRef] [PubMed]
- Pandhi, T.; Chandnani, A.; Subbaraman, H.; Estrada, D. A Review of Inkjet Printed Graphene and Carbon Nanotubes Based Gas Sensors. Sensors 2020, 20, 5642. [Google Scholar] [CrossRef]
- Hartwig, M.; Zichner, R.; Joseph, Y. Inkjet-Printed Wireless Chemiresistive Sensors—A Review. Chemosensors 2018, 6, 66. [Google Scholar] [CrossRef] [Green Version]
- Chiu, S.-W.; Tang, K.-T. Towards a Chemiresistive Sensor-Integrated Electronic Nose: A Review. Sensors 2013, 13, 14214–14247. [Google Scholar] [CrossRef] [Green Version]
- Joshi, N.; Hayasaka, T.; Liu, Y.; Liu, H.; Oliveira, O.N., Jr.; Lin, L. A Review on Chemiresistive Room Temperature Gas Sensors Based on Metal Oxide Nanostructures, Graphene and 2D Transition Metal Dichalcogenides. Mikrochim. Acta 2018, 185, 213. [Google Scholar] [CrossRef]
- Jian, Y.; Hu, W.; Zhao, Z.; Cheng, P.; Haick, H.; Yao, M.; Wu, W. Gas Sensors Based on Chemi-Resistive Hybrid Functional Nanomaterials. Nanomicro Lett. 2020, 12, 71. [Google Scholar] [CrossRef] [Green Version]
- Tien, N.T.; Jeon, S.; Kim, D.-I.; Trung, T.Q.; Jang, M.; Hwang, B.-U.; Byun, K.-E.; Bae, J.; Lee, E.; Tok, J.B.-H.; et al. A Flexible Bimodal Sensor Array for Simultaneous Sensing of Pressure and Temperature. Adv. Mater. 2014, 26, 796–804. [Google Scholar] [CrossRef]
- Parikesit, E.; Mengko, T.L.R.; Zakaria, H. Wearable Gait Measurement System Based on Accelerometer and Pressure Sensor. In Proceedings of the 2011 2nd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering, Bandung, Indonesia, 8–9 November 2011; pp. 395–398. [Google Scholar]
- Zhou, Y.; Desplenter, T.; Chinchalkar, S.; Trejos, A.L. A Wearable Mechatronic Glove for Resistive Hand Therapy Exercises. In Proceedings of the 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, 24–28 June 2019; pp. 1097–1102. [Google Scholar]
- Tsao, L.-C.; Cheng, M.-Y.; Chen, I.-L.; Shih, W.-P.; Yang, Y.-J.; Chang, F.-Y.; Fan, K.-C.; Chang, S.-H. Flexible Temperature Sensor Array Using Electro-Resistive Polymer Forhumanoid Artificial Skin. In Proceedings of the TRANSDUCERS 2007—2007 International Solid-State Sensors, Actuators and Microsystems Conference, Lyon, France, 10–14 June 2007. [Google Scholar]
- Lichtenwalner, D.J.; Hydrick, A.E.; Kingon, A.I. Flexible Thin Film Temperature and Strain Sensor Array Utilizing a Novel Sensing Concept. Sens. Actuators A Phys. 2007, 135, 593–597. [Google Scholar] [CrossRef]
- Kassal, P.; Steinberg, M.D.; Steinberg, I.M. Wireless Chemical Sensors and Biosensors: A Review. Sens. Actuators B Chem. 2018, 266, 228–245. [Google Scholar] [CrossRef]
- Chen, D.; Cai, Y.; Huang, M.-C. Customizable Pressure Sensor Array: Design and Evaluation. IEEE Sens. J. 2018, 18, 6337–6344. [Google Scholar] [CrossRef]
- Wang, J.; Gu, W.; Qi, W.; Li, C.; Chen, D.; Adedokun, G.; Xu, L.; Wu, F. A fully integrated gas detection system with programmable heating voltage and digital output rate for gas sensor array. IEEE Sens. J. 2021, 21, 6821–6829. [Google Scholar] [CrossRef]
Sensor Type | Resistive sensor |
Sensor resistance range | 1 KΩ–1 MΩ |
Number of sensors | 60; can be expandable |
Sensor sensitivity | 0.1% |
Target processing time | ~1 s |
Target applications | Electronic skin (e-skin) for blood pressure and body temperature monitoring; electronic nose (e-nose) for environmental harmful/toxic gas detection |
Parameter | Value | Unit |
---|---|---|
ADG732BSUZ specifications | ||
Operating supply voltage | 1.8–5.5 | V |
Supply current | 20 | µA |
ON-resistance | 5.5 | Ω |
AD5242BRZ1M specifications | ||
Operating supply voltage | 2.7–5.5 | V |
Supply current | 100 | nA |
Digital potentiometer (DPOT) resistance range | 60–1 M | Ω |
PSoC5LP specifications | ||
Operating supply voltage | 1.71–5.5 | V |
Supply current at 6 MHz | 3.1 | mA |
Supply current at 24 MHz | 8.9 | mA |
Supply current in the sleep mode | 2 | µA |
Internal analog-to-digital converter (ADC) input range | 0–5 | V |
Internal ADC reference voltage (Vref = VDDA/4) | 1.25 | V |
Internal ADC conversion rate | 10 | KSPS |
TPS61240IDRVRQ1 specifications | ||
Output voltage | 5 ± 2% | V |
Input voltage range | 2.3–5.5 | V |
Supply current | 30 | µA |
Output current | 450 | mA |
TLV75733PDBVR specifications | ||
Output voltage | 3.3 ± 1% | V |
Input voltage range | 1.45–5.5 | V |
Supply current | 25 | µA |
Output current | 1 | A |
SPBTLE-1S specifications | ||
Operating supply voltage | 1.7–3.6 | V |
Bluetooth version | v4.2 | NA |
Radiated transmit power | +4 | dBm |
Receiver sensitivity | −84 | dBm |
Antenna frequency | 2402–2480 | MHz |
Supply current while receiving | 7.7 | mA |
Supply current while transmitting at 5 dBm | 15 | mA |
Supply current while transmitting at 0 dBm | 11 | mA |
Supply current while in the sleep mode | 0.9 | µA |
Sensor | |||||||
---|---|---|---|---|---|---|---|
R1–R5 | 1,000,000 | 1,009,537.00 | 1,024,401.20 | 997,827.65 | −0.95 | −2.44 | 0.22 |
R6–R10 | 800,000 | 811,997.40 | 818,773.68 | 800,976.85 | −1.50 | −2.35 | −0.12 |
R11–R15 | 750,000 | 754,240.60 | 765,247.17 | 743,990.80 | −0.57 | −2.03 | 0.80 |
R16–R20 | 500,000 | 504,167.20 | 511,015.70 | 498,515.00 | −0.83 | −2.20 | 0.30 |
R21–R25 | 300,000 | 301,481.70 | 305,967.77 | 298,185.59 | −0.49 | −1.99 | 0.60 |
R26–R30 | 205,000 | 205,518.40 | 206,714.55 | 200,183.09 | −0.25 | −0.84 | 2.35 |
R31–R35 | 100,000 | 100,021.60 | 102,327.48 | 99,236.38 | −0.02 | −2.33 | 0.76 |
R36–R40 | 75,000 | 75,192.49 | 75,826.99 | 74,634.44 | −0.26 | −1.10 | 0.49 |
R41–R45 | 50,000 | 50,574.35 | 51,057.00 | 49,858.35 | −1.15 | −2.11 | 0.28 |
R46–R50 | 30,000 | 30,729.80 | 30,745.39 | 29,690.22 | −2.43 | −2.48 | 1.03 |
R51–R55 | 20,500 | 20,627.91 | 20,882.63 | 20,258.24 | −0.62 | −1.87 | 1.18 |
R56–R60 | 10,000 | 10,045.01 | 10,149.11 | 9971.02 | −0.45 | −1.49 | 0.29 |
Weight (g) | Error (%) | ||
---|---|---|---|
50 | 6.45 | 6.42 | 0.47 |
70 | 5.15 | 5.06 | 1.75 |
100 | 3.54 | 3.51 | 0.85 |
200 | 2.60 | 2.54 | 2.31 |
500 | 2.35 | 2.30 | 2.13 |
700 | 1.57 | 1.57 | 0.00 |
750 | 1.41 | 1.40 | 0.71 |
Measurable resistance range | 1 KΩ–1 MΩ |
Error rate | 0–2.5% |
Number of sensors | 60; can be expandable |
Device dimension | 3 cm 3 cm |
Supply voltage | 5 V |
System power consumption | ~95 mW at 5 V |
Processing speed/data rate | 51 Hz |
ADC resolution | 16 bits |
Approximate system cost | $100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakshminarayana, S.; Park, Y.; Park, H.; Jung, S. High Density Resistive Array Readout System for Wearable Electronics. Sensors 2022, 22, 1878. https://doi.org/10.3390/s22051878
Lakshminarayana S, Park Y, Park H, Jung S. High Density Resistive Array Readout System for Wearable Electronics. Sensors. 2022; 22(5):1878. https://doi.org/10.3390/s22051878
Chicago/Turabian StyleLakshminarayana, Shanthala, Younghun Park, Hyusim Park, and Sungyong Jung. 2022. "High Density Resistive Array Readout System for Wearable Electronics" Sensors 22, no. 5: 1878. https://doi.org/10.3390/s22051878
APA StyleLakshminarayana, S., Park, Y., Park, H., & Jung, S. (2022). High Density Resistive Array Readout System for Wearable Electronics. Sensors, 22(5), 1878. https://doi.org/10.3390/s22051878