Linear Regression vs. Deep Learning: A Simple Yet Effective Baseline for Human Body Measurement
Abstract
:1. Introduction
- We propose the linear regression model, that uses self-estimated height and weight, to be used as a baseline for human body measurement estimation;
- We demonstrate that the baseline performs strongly against the state-of-the-art methods for body measurement estimation and analyze its performance in detail;
- We publish the source code, the demo for obtaining the body measurements given height and weight as input, and the protocol for extracting the standard body measurements from the SMPL mesh.
2. Related Work
3. Method
3.1. Linear Regression Model
3.2. Extraction of Body Measurements
4. Evaluation
4.1. Datasets
4.2. Quantitative Evaluation
- Mean absolute error (MAE), , where i is the sample index, j represents the measurement, and N is the number of samples;
- Mean relative error (MRE), , where i is the sample index, j represents measurement, and N is the number of samples;
- Against other methods such as the Virtual Caliper [31] that estimates body lengths using a VR headset.
5. Discussion
5.1. Residuals, p-Values, and Scores
5.2. Height and Weight for Body Measurement Estimation
5.3. Comparing BODY-Fit and ANSUR Models
5.4. On Image-Based Mesh Regression
5.5. Limitations, Assumptions, and Future Guidelines
5.6. Implementation Details
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Heymsfield, S.; Bourgeois, B.; Ng, B.; Sommer, M.; Li, X.; Shepherd, J. Digital anthropometry: A critical review. Eur. J. Clin. Nutr. 2018, 72, 680–687. [Google Scholar] [CrossRef]
- Zakaria, N.; Gupta, D. Anthropometry, Apparel Sizing and Design; The Textile Institute Book Series; Elsevier Science: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Casadei, K.; Kiel, J. Anthropometric Measurement; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Dianat, I.; Molenbroek, J.; Castellucci, I. A review of the methodology and applications of anthropometry in ergonomics and product design. Ergonomics 2018, 61, 1696–1720. [Google Scholar] [CrossRef]
- Loper, M.; Mahmood, N.; Romero, J.; Pons-Moll, G.; Black, M.J. SMPL: A Skinned Multi-Person Linear Model. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 2015, 34, 248:1–248:16. [Google Scholar] [CrossRef]
- Tsoli, A.; Loper, M.; Black, M. Model-based Anthropometry: Predicting Measurements from 3D Human Scans in Multiple Poses. In Proceedings of the 2014 IEEE Winter Conference on Applications of Computer Vision (WACV 2014), Steamboat Springs, CO, USA, 24–26 March 2014. [Google Scholar] [CrossRef] [Green Version]
- Kaashki, N.N.; Hu, P.; Munteanu, A. Deep Learning-Based Automated Extraction of Anthropometric Measurements From a Single 3-D Scan. IEEE Trans. Instrum. Meas. 2021, 70, 1–14. [Google Scholar] [CrossRef]
- Yan, S.; Wirta, J.; Kämäräinen, J.K. Anthropometric clothing measurements from 3D body scans. Mach. Vis. Appl. 2020, 31, 7. [Google Scholar] [CrossRef] [Green Version]
- Bartol, K.; Bojanić, D.; Petković, T.; Pribanić, T. A Review of Body Measurement Using 3D Scanning. IEEE Access 2021, 9, 67281–67301. [Google Scholar] [CrossRef]
- Bogo, F.; Kanazawa, A.; Lassner, C.; Gehler, P.; Romero, J.; Black, M.J. Keep it SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image. In Proceedings of the 14th European Conference on Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 8–16 October 2016; Springer International Publishing: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Pavlakos, G.; Choutas, V.; Ghorbani, N.; Bolkart, T.; Osman, A.A.A.; Tzionas, D.; Black, M.J. Expressive Body Capture: 3D Hands, Face, and Body from a Single Image. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Kocabas, M.; Athanasiou, N.; Black, M.J. VIBE: Video Inference for Human Body Pose and Shape Estimation. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 5252–5262. [Google Scholar]
- Kocabas, M.; Huang, C.H.P.; Hilliges, O.; Black, M.J. PARE: Part Attention Regressor for 3D Human Body Estimation. arXiv 2021, arXiv:2104.08527. [Google Scholar]
- Choutas, V.; Pavlakos, G.; Bolkart, T.; Tzionas, D.; Black, M.J. Monocular Expressive Body Regression through Body-Driven Attention. In Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020; pp. 20–40. [Google Scholar]
- Kolotouros, N.; Pavlakos, G.; Black, M.J.; Daniilidis, K. Learning to Reconstruct 3D Human Pose and Shape via Model-Fitting in the Loop. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27–28 October 2019; pp. 2252–2261. [Google Scholar]
- Kanazawa, A.; Black, M.J.; Jacobs, D.W.; Malik, J. End-to-end Recovery of Human Shape and Pose. In Proceedings of the Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Kolotouros, N.; Pavlakos, G.; Jayaraman, D.; Daniilidis, K. Probabilistic Modeling for Human Mesh Recovery. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 11–17 October 2021. [Google Scholar]
- Dwivedi, S.K.; Athanasiou, N.; Kocabas, M.; Black, M.J. Learning To Regress Bodies From Images Using Differentiable Semantic Rendering. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 11–17 October 2021; pp. 11250–11259. [Google Scholar]
- Moon, G.; Lee, K.M. I2L-MeshNet: Image-to-Lixel Prediction Network for Accurate 3D Human Pose and Mesh Estimation from a Single RGB Image. In Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020. [Google Scholar]
- Kolotouros, N.; Pavlakos, G.; Daniilidis, K. Convolutional Mesh Regression for Single-Image Human Shape Reconstruction. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 4496–4505. [Google Scholar]
- Smith, B.M.; Chari, V.; Agrawal, A.; Rehg, J.M.; Sever, R. Towards Accurate 3D Human Body Reconstruction from Silhouettes. In Proceedings of the 2019 International Conference on 3D Vision (3DV), Quebec City, QC, Canada, 16–19 September 2019; pp. 279–288. [Google Scholar] [CrossRef]
- Dibra, E.; Jain, H.; Öztireli, C.; Ziegler, R.; Gross, M. HS-Nets: Estimating Human Body Shape from Silhouettes with Convolutional Neural Networks. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 108–117. [Google Scholar] [CrossRef]
- Dibra, E.; Jain, H.; Öztireli, C.; Ziegler, R.; Gross, M. Human Shape from Silhouettes Using Generative HKS Descriptors and Cross-Modal Neural Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5504–5514. [Google Scholar] [CrossRef] [Green Version]
- Dibra, E.; Öztireli, C.; Ziegler, R.; Gross, M. Shape from Selfies: Human Body Shape Estimation Using CCA Regression Forests. In Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 8–16 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 88–104. [Google Scholar]
- Boisvert, J.; Shu, C.; Wuhrer, S.; Xi, P. Three-dimensional human shape inference from silhouettes: Reconstruction and validation. Mach. Vis. Appl. 2011, 24, 145–157. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Kim, T.K.; Cipolla, R. Inferring 3D Shapes and Deformations from Single Views. In Proceedings of the Computer Vision—ECCV 2010, Crete, Greece, 5–11 September 2010; Daniilidis, K., Maragos, P., Paragios, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 300–313. [Google Scholar]
- Xi, P.; Lee, W.S.; Shu, C. A Data-driven Approach to Human-body Cloning Using a Segmented Body Database. In Proceedings of the 15th Pacific Conference on Computer Graphics and Applications (PG’07), Maui, HI, USA, 29 October–2 November 2007; pp. 139–147. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Wirta, J.; Kämäräinen, J.K. Silhouette Body Measurement Benchmarks. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 7804–7809. [Google Scholar] [CrossRef]
- Wan, Z.; Li, Z.; Tian, M.; Liu, J.; Yi, S.; Li, H. Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 11–17 October 2021. [Google Scholar]
- Gordon, C.C.; Blackwell, C.L.; Bradtmiller, B.; Parham, J.L.; Barrientos, P.; Paquette, S.P.; Corner, B.D.; Carson, J.M.; Venezia, J.C.; Rockwell, B.M.; et al. 2012 Anthropometric Survey of U.S. Army Personnel: Methods and Summary Statistics; U.S. Army Natick Soldier Research, Development and Engineering Center: Natick, MA, USA, 2015. [Google Scholar]
- Pujades, S.; Mohler, B.J.; Thaler, A.; Tesch, J.; Mahmood, N.; Hesse, N.; Bülthoff, H.H.; Black, M.J. The Virtual Caliper: Rapid Creation of Metrically Accurate Avatars from 3D Measurements. IEEE Trans. Vis. Comput. Graph. 2019, 25, 1887–1897. [Google Scholar] [CrossRef] [Green Version]
- Kouchi, M.; Mochimaru, M. Errors in landmarking and the evaluation of the accuracy of traditional and 3D anthropometry. Appl. Ergon. 2011, 42, 518–527. [Google Scholar] [CrossRef]
- ISO 7250-1; Basic Human Body Measurements for Technological Design—Part 1: Body Measurement Definitions and Landmarks. International Organization for Standardization: Seoul, Korea, 2017.
- ISO 20685-1; 3-D Scanning Methodologies for Internationally Compatible Anthropometric Databases—Part 1: Evaluation Protocol for Body Dimensions Extracted from 3-D Body Scans. International Organization for Standardization: London, UK, 2018.
- You, H.; Ryu, T. Development of a hierarchical estimation method for anthropometric variables. Int. J. Ind. Ergon. 2005, 35, 331–343. [Google Scholar] [CrossRef]
- Brolin, E.; Högberg, D.; Hanson, L.; Örtengren, R. Adaptive regression model for synthesizing anthropometric population data. Int. J. Ind. Ergon. 2017, 59, 46–53. [Google Scholar] [CrossRef]
- PHEASANT, S.T. A technique for estimating anthropometric data from the parameters of the distribution of stature. Ergonomics 1982, 25, 981–992. [Google Scholar] [CrossRef]
- Kawakami, R.; Miyachi, M.; Tanisawa, K.; Ito, T.; Usui, C.; Midorikawa, T.; Torii, S.; Ishii, K.; Suzuki, K.; Sakamoto, S.; et al. Development and validation of a simple anthropometric equation to predict appendicular skeletal muscle mass. Clin. Nutr. 2021, 40, 5523–5530. [Google Scholar] [CrossRef]
- Lu, J.M.; Wang, M.J.J. Automated anthropometric data collection using 3D whole body scanners. Expert Syst. Appl. 2008, 35, 407–414. [Google Scholar] [CrossRef]
- Wang, M.J.; Wu, W.Y.; Lin, K.C.; Yang, S.N.; Lu, J.M. Automated anthropometric data collection from three-dimensional digital human models. Int. J. Adv. Manuf. Technol. 2007, 32, 109–115. [Google Scholar] [CrossRef]
- Lin, K.; Wang, L.; Liu, Z. End-to-End Human Pose and Mesh Reconstruction with Transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Virtual Conference, 19–25 June 2021. [Google Scholar]
- Lin, K.; Wang, L.; Liu, Z. Mesh Graphormer. In Proceedings of the International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 11–17 October 2021. [Google Scholar]
- Choi, H.; Moon, G.; Lee, K.M. Pose2Mesh: Graph Convolutional Network for 3D Human Pose and Mesh Recovery from a 2D Human Pose. arXiv 2020, arXiv:2008.09047. [Google Scholar]
- Anguelov, D.; Srinivasan, P.; Koller, D.; Thrun, S.; Rodgers, J.; Davis, J. SCAPE: Shape Completion and Animation of People. ACM Trans. Graph. 2005, 24, 408–416. [Google Scholar] [CrossRef]
- Hirshberg, D.; Loper, M.; Rachlin, E.; Black, M. Coregistration: Simultaneous alignment and modeling of articulated 3D shape. In Proceedings of the European Conference on Computer Vision (ECCV), Florence, Italy, 7–13 October 2012; Springer: Firenze, Italy, 2012; pp. 242–255. [Google Scholar]
- Osman, A.A.A.; Bolkart, T.; Black, M.J. STAR: A Sparse Trained Articulated Human Body Regressor. In Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020; pp. 598–613. [Google Scholar]
- UK National Sizing Survey. Available online: http://www.size.org/ (accessed on 20 November 2020).
- SizeUSA Dataset. Available online: https://www.tc2.com/size-usa.html (accessed on 17 March 2021).
- Caesar I, The Most Comprehensive Source for Body Measurement Data. Available online: http://store.sae.org/caesar/ (accessed on 20 November 2020).
- Liu, D.C.; Nocedal, J. On the Limited Memory BFGS Method for Large Scale Optimization. Math. Program. 1989, 45, 503–528. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Pujades, S.; Black, M.; Pons-Moll, G. Detailed, accurate, human shape estimation from clothed 3D scan sequences. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE Computer Society: Washington, DC, USA, 2017; pp. 5484–5493. [Google Scholar] [CrossRef] [Green Version]
- Balan, A.O.; Sigal, L.; Black, M.J.; Davis, J.E.; Haussecker, H.W. Detailed Human Shape and Pose from Images. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pavlakos, G.; Zhu, L.; Zhou, X.; Daniilidis, K. Learning to Estimate 3D Human Pose and Shape from a Single Color Image. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 459–468. [Google Scholar]
- Iqbal, U.; Xie, K.; Guo, Y.; Kautz, J.; Molchanov, P. KAMA: 3D Keypoint Aware Body Mesh Articulation. arXiv 2021, arXiv:2104.13502. [Google Scholar]
- Li, J.; Xu, C.; Chen, Z.; Bian, S.; Yang, L.; Lu, C. HybrIK: A Hybrid Analytical-Neural Inverse Kinematics Solution for 3D Human Pose and Shape Estimation. In Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Virtual Conference, 19–25 June 2021. [Google Scholar]
- Choi, H.; Moon, G.; Lee, K.M. Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Virtual Conference, 19–25 June 2021. [Google Scholar]
- Joo, H.; Neverova, N.; Vedaldi, A. Exemplar Fine-Tuning for 3D Human Pose Fitting Towards In-the-Wild 3D Human Pose Estimation. arXiv 2020, arXiv:2004.03686. [Google Scholar]
- Doersch, C.; Zisserman, A. Sim2real transfer learning for 3D pose estimation: Motion to the rescue. arXiv 2019, arXiv:1907.02499. [Google Scholar]
- Guan, S.; Xu, J.; Wang, Y.; Ni, B.; Yang, X. Bilevel Online Adaptation for Out-of-Domain Human Mesh Reconstruction. arXiv 2021, arXiv:2103.16449. [Google Scholar]
- Rempe, D.; Birdal, T.; Hertzmann, A.; Yang, J.; Sridhar, S.; Guibas, L.J. HuMoR: 3D Human Motion Model for Robust Pose Estimation. arXiv 2021, arXiv:2105.04668. [Google Scholar]
- Chen, Y.C.; Piccirilli, M.; Piramuthu, R.; Yang, M.H. Self-attentive 3D human pose and shape estimation from videos. In Computer Vision and Image Understanding; Elsevier Science: Amsterdam, The Netherlands, 2021; p. 103305. [Google Scholar] [CrossRef]
- Moon, G.; Lee, K.M. Pose2Pose: 3D Positional Pose-Guided 3D Rotational Pose Prediction for Expressive 3D Human Pose and Mesh Estimation. arXiv 2020, arXiv:2011.11534. [Google Scholar]
- Yi, X.; Zhou, Y.; Xu, F. TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors. ACM Trans. Graph. 2021, 40, 86:1–86:13. [Google Scholar] [CrossRef]
- Zhou, Y.; Habermann, M.; Habibie, I.; Tewari, A.; Theobalt, C.; Xu, F. Monocular Real-time Full Body Capture with Inter-part Correlations. In Proceedings of the CVPR, Virtual Conference, 19–25 June 2021. [Google Scholar]
- Madadi, M.; Bertiche, H.; Escalera, S. SMPLR: Deep learning based SMPL reverse for 3D human pose and shape recovery. Pattern Recognit. 2020, 106, 107472. [Google Scholar] [CrossRef]
- Georgakis, G.; Li, R.; Karanam, S.; Chen, T.; Košecká, J.; Wu, Z. Hierarchical Kinematic Human Mesh Recovery. In Proceedings of the European Conference on Computer Vision—ECCV 2020, Glasgow, UK, 23–28 August 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 768–784. [Google Scholar]
- Yan, S.; Kämäräinen, J.K. Learning Anthropometry from Rendered Humans. arXiv 2021, arXiv:2101.02515. [Google Scholar]
- Walpole, R.E.; Myers, R.H.; Myers, S.L.; Ye, K. Probability & Statistics for Engineers and Scientists, 8th ed.; Pearson Education: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Lien, S.l.; Kajiya, J.T. A symbolic method for calculating the integral properties of arbitrary nonconvex polyhedra. IEEE Comput. Graph. Appl. 1984, 4, 35–42. [Google Scholar] [CrossRef]
- Krzywicki, H.J.; Chinn, K.S. Human body density and fat of an adult male population as measured by water displacement. Am. J. Clin. Nutr. 1967, 20, 305–310. [Google Scholar] [CrossRef]
- Hasler, N.; Stoll, C.; Sunkel, M.; Rosenhahn, B.; Seidel, H.P. A Statistical Model of Human Pose and Body Shape. Comput. Graph. Forum 2009, 28, 337–346. [Google Scholar] [CrossRef]
- Human Solutions GmbH. Anthroscan. Available online: https://www.human-solutions.com/ (accessed on 20 November 2020).
- Heinze, G.; Wallisch, C.; Dunkler, D. Variable selection—A review and recommendations for the practicing statistician. Biom. J. 2018, 60, 431–449. [Google Scholar] [CrossRef] [Green Version]
- Pishchulin, L.; Wuhrer, S.; Helten, T.; Theobalt, C.; Schiele, B. Building Statistical Shape Spaces for 3D Human Modeling. Pattern Recognit. 2017, 67, 276–286. [Google Scholar] [CrossRef] [Green Version]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision, 2nd ed.; Cambridge University Press: New York, NY, USA, 2003. [Google Scholar]
- Cawley, J.; Maclean, J.; Hammer, M.; Wintfeld, N. Reporting error in weight and its implications for bias in economic models. Econ. Hum. Biol. 2015, 19, 27–44. [Google Scholar] [CrossRef]
- Sengupta, A.; Budvytis, I.; Cipolla, R. Synthetic Training for Accurate 3D Human Pose and Shape Estimation in the Wild. In Proceedings of the British Machine Vision Conference (BMVC), Virtual Conference, 7–10 September 2020. [Google Scholar]
- Kouchi, M.; Mochimaru, M.; Tsuzuki, K.; Yokoi, T. Random Errors in Anthropometry. J. Hum. Ergol. 1996, 25, 155–166. [Google Scholar] [CrossRef]
- Jamison, P.L.; Zegura, S.L. A univariate and multivariate examination of measurement error in anthropometry. Am. J. Phys. Anthropol. 1974, 40, 197–203. [Google Scholar] [CrossRef]
- Kouchi, M.; Mochimaru, M.; Tsuzuki, K.; Yokoi, T. Interobserver errors in anthropometry. J. Hum. Ergol. 1999, 28, 15–24. [Google Scholar]
- Ulijaszek, S.J.; Kerr, D.A. Anthropometric measurement error and the assessment of nutritional status. Br. J. Nutr. 1999, 82, 165–177. [Google Scholar] [CrossRef] [Green Version]
- Branson, R.S.; Branson, R.S.; Vaucher, Y.E.; Harrison, G.G.; Harrison, G.G.; Vargas, M.; Thies, C. Inter- and Intra-Observer Reliability of Skinfold Thickness Measurements in Newborn Infants. Hum. Biol. 1982, 54, 137–143. [Google Scholar]
- Utermohle, C.J.; Zegura, S.L.; Heathcote, G.M. Multiple observers, humidity, and choice of precision statistics: Factors influencing craniometric data quality. Am. J. Phys. Anthropol. 1983, 61, 85–95. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Trimesh. Available online: https://trimsh.org/ (accessed on 22 February 2022).
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [Green Version]
Measurement Set | Measurement | Landmark Index | |
---|---|---|---|
Standard | A | Head circumference | 14 |
B | Neck circumference | 10 | |
C | Shoulder to crotch | 1, 10 | |
D | Chest circumference | 4 | |
E | Waist circumference | 13 | |
F | Hip circumference | 19 | |
G | Wrist circumference | 9 | |
H | Bicep circumference | 20 | |
I | Forearm circumference | 15 | |
J | Arm length | 2, 9 | |
K | Inside leg length | 11, 12 | |
L | Thigh circumference | 16 | |
M | Calf circumference | 17 | |
N | Ankle circumference | 18 | |
O | Shoulder breadth | 2, 3 | |
Additional [31] | - | Arm span | 7, 8 |
- | Inseam height | 2, 19 | |
- | Hip width | 5, 6 |
Landmark Index | Landmark Name | Vertex Index | Landmark Index | Landmark | Vertex Index |
---|---|---|---|---|---|
1 | Inseam point | 3149 | 11 | Low left hip | 3134 |
2 | Left shoulder | 3011 | 12 | Left ankle | 3334 |
3 | Right shoulder | 6470 | 13 | Lower belly point | 1769 |
4 | Left chest | 1423 | 14 | Forehead point | 335 |
5 | Left hip | 1229 | 15 | Right forearm point | 5084 |
6 | Right hip | 4949 | 16 | Right thigh point | 4971 |
7 | Left mid finger | 2445 | 17 | Right calf point | 4589 |
8 | Right mid finger | 5906 | 18 | Right ankle point | 6723 |
9 | Left wrist | 2241 | 19 | Mid hip point | 3145 |
10 | Shoulder top | 3068 | 20 | Right bicep point | 6281 |
Dataset | Samples | Data Type | Availability | Approach | Reported by |
---|---|---|---|---|---|
BODY-fit | 4149 | SMPL mesh | Public | 2D-based | [28], Our |
BODY-fit+W | 4149 | SMPL mesh | Public | 2D-based | [10,14,28], Our |
ANSUR | 6068 | Tabular | Public | Regression | ISO [30], Our |
CAESAR | 3800 | Point cloud | Proprietary | 3D-based | [21,23,25,26,27] |
[6,16,22,71,72] | |||||
NOMO3D | 375 | Point cloud | Public | 3D-based | [8] |
Virtual Caliper | 20 | Point cloud | Private | Regression | [31] |
SMPL Mesh (BODY-fit+W) | ANSUR Attribute/Expression | |
---|---|---|
A | Head circumference | headcircumference |
B | Neck circumference | neckcircumference |
C | Shoulder to crotch | sittingheight-(stature-acromialheight) |
D | Chest circumference | chestcircumference |
E | Waist circumference | waistcircumference |
F | Hip circumference | buttockcircumference |
G | Wrist circumference | wristcircumference |
H | Bicep circumference | bicepcircumferenceflexed |
I | Forearm circumference | forearmcircumferenceflexed |
J | Arm length | acromialheight-wristheight |
K | Inside leg length | crotchheight-lateralmalleolusheight |
L | Thigh circumference | thighcircumference |
M | Calf circumference | calfcircumference |
N | Ankle circumference | anklecircumference |
O | Shoulder breadth | biacromialbreadth |
Measurement | Dataset | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
†Xi ’07 [27] | CAESAR | 50.0 | 59.0 | 119 | 36.0 | 55.0 | 23.0 | 56.0 | 146 | 182 | 109 | 19.0 | 35.0 | 33.0 | 61.0 | 24.0 | 67.1 |
†Chen ’10 [26] | CAESAR | 23.0 | 27.0 | 52.0 | 18.0 | 37.0 | 15.0 | 24.0 | 59.0 | 76.0 | 53.0 | 9.0 | 19.0 | 16.0 | 28.0 | 12.0 | 31.2 |
†Boisvert ’13 [25] | CAESAR | 10.0 | 11.0 | 4.0 | 10.0 | 22.0 | 11.0 | 9.0 | 17.0 | 16.0 | 15.0 | 6.0 | 9.0 | 6.0 | 14.0 | 6.0 | 11.1 |
Expert error [30] | ANSUR | 5.0 | 6.0 | 15.0 | 12.0 | 12.0 | - | - | - | 6.0 | - | 4.0 | - | - | - | 8.0 | 8.5 |
†Dibra ’17 [23] | CAESAR | 3.2 | 1.9 | 4.2 | 5.6 | 7.1 | 6.9 | 1.6 | 2.6 | 2.2 | 2.3 | 4.3 | 5.1 | 2.7 | 1.4 | 2.1 | 3.6 |
†Dibra ’16 [22] | CAESAR | 2.0 | 2.0 | 3.0 | 2.0 | 7.0 | 4.0 | 2.0 | 2.0 | 1.0 | 3.0 | 9.0 | 6.0 | 3.0 | 2.0 | 2.0 | 3.3 |
†Smith ’19 [21] | CAESAR | 5.1 | 3.0 | 1.5 | 4.7 | 4.8 | 3.0 | 2.5 | 2.7 | 1.9 | 1.7 | 1.5 | 2.4 | 2.3 | 2.1 | 1.9 | 2.7 |
Baseline (I = 4) | BODY-fit | 7.9 | 1.2 | 5.6 | 10.1 | 9.2 | 3.6 | 0.6 | 1.4 | 1.3 | 5.3 | 8.0 | 8.4 | 2.6 | 1.4 | 6.6 | 4.9 |
Method | Dataset | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HMR [16] | CAESAR | 16.7 | 35.7 | 33.8 | 92.8 | 118 | 68.7 | 12.2 | 29.3 | 20.6 | 29.9 | 44.3 | 38.5 | 25.8 | 14.0 | 26.5 | 39.8 |
ExPose [14] | BODY-fit | 17.4 | 13.1 | 31.4 | 96.0 | 116.7 | 54.8 | 7.7 | 33.3 | 15.3 | 12.3 | 29.5 | 37.3 | 18.2 | 8.9 | 23.0 | 34.3 |
SMPLify [10] | BODY-fit | 15.3 | 7.7 | 8.7 | 57.5 | 74.7 | 39.7 | 5.1 | 21.0 | 9.5 | 5.7 | 11.4 | 27.2 | 12.3 | 6.5 | 10.4 | 21.6 |
Hasler ’09 [71] | CAESAR | 7.5 | 17.0 | 7.5 | 13.0 | 19.0 | 16.2 | - | - | - | 10.4 | - | - | - | 6.6 | - | 12.2 |
Anthroscan [72] | CAESAR | 7.4 | 21.1 | 7.5 | 12.4 | 17.0 | 7.5 | - | - | - | 11.7 | - | - | - | 7.6 | - | 11.5 |
Tsoli ’14 [6] | CAESAR | 5.9 | 15.8 | 5.5 | 12.7 | 18.6 | 12.4 | - | - | - | 10.1 | - | - | - | 6.2 | - | 10.9 |
Yan ’20 [28] | BODY-fit | 12.0 | 13.6 | 8.9 | 22.2 | 16.9 | 14.2 | 4.8 | 10.0 | 8.0 | 6.8 | 7.5 | 13.8 | 9.1 | 5.9 | 8.2 | 10.8 |
Dibra ’16 [22] | CAESAR | 9.3 | 10.0 | 6.6 | 22.8 | 24.0 | 20.0 | 9.9 | 12.0 | 7.9 | 6.4 | 8.9 | 15.5 | 13.2 | 7.6 | 6.0 | 10.7 |
Expert Error [30] | ANSUR | 5.0 | 6.0 | 15.0 | 12.0 | 12.0 | - | - | - | 6.0 | - | 4.0 | - | - | - | 8.0 | 8.5 |
Yan ’20 [8] | NOMO3D | - | 3.7 | - | 13.2 | 12.4 | 8.9 | 4.5 | 5.5 | 3.0 | 13.2 | - | 7.9 | 3.0 | 10.6 | 12.4 | 8.2 |
Smith ’19 [21] | CAESAR | 6.7 | 8.0 | 5.1 | 12.5 | 15.8 | 9.3 | 9.3 | 8.1 | 5.7 | 5.1 | 6.8 | 8.8 | 7.2 | 5.0 | 4.5 | 7.9 |
Baseline (I = 2) | BODY-fit+W | 9.1 | 4.2 | 6.6 | 30.3 | 39.5 | 28.0 | 2.7 | 10.0 | 4.9 | 5.7 | 9.5 | 16.0 | 7.3 | 3.3 | 9.0 | 12.4 |
Baseline (I = 2) | ANSUR | 11.9 | 10.7 | 17.4 | 29.1 | 37.9 | 21.6 | 4.4 | 13.2 | 9.3 | 17.6 | 19.6 | 17.0 | 12.8 | 8.7 | 11.4 | 16.2 |
Measurement | Dataset | Arm Span | Arm Length | Inseam Height | Hip Width | Mean |
---|---|---|---|---|---|---|
Virtual Caliper [31] | Virtual Caliper | 17.2 | 7.6 | 24.6 | 6.5 | 14.0 |
Baseline (I = 2) | BODY-fit+W | 13.1 | 5.7 | 8.8 | 6.7 | 8.6 |
2D-Based | 3D-Based | Baseline (I = 2) | Baseline (I = 2) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SMPLify [10] (BODY-fit+W) | Yan et al. [8] (NOMO3D) | BODY-fit+W | ANSUR | |||||||||
MAE [mm]↓ | MRE (%)↓ | %<Expert ↑ | MAE | MRE | %<Expert | MAE | MRE | %<Expert | MAE | MRE | %<Expert | |
A | 15.3 | 2.3 | 25.1 | - | - | - | 9.1 | 1.5 | 43.1 | 11.9 | 2.1 | 27.9 |
B | 7.7 | 4.4 | 50.7 | 3.7 | - | 87.6 | 4.2 | 1.1 | 74.9 | 10.7 | 2.9 | 34.9 |
C | 8.7 | 1.4 | 85.2 | - | - | - | 6.6 | 0.9 | 94.2 | 17.4 | 3.0 | 50.1 |
D | 57.5 | 5.5 | 13.6 | 13.2 | - | 67.6 | 30.3 | 1.4 | 23.8 | 29.1 | 2.9 | 27.3 |
E | 74.7 | 7.0 | 9.3 | 12.4 | - | 58.7 | 39.5 | 1.6 | 19.8 | 37.9 | 4.2 | 20.6 |
F | 39.7 | 5.9 | 12.3 | 8.9 | - | 72.4 | 28.0 | 1.1 | 23.4 | 21.6 | 2.1 | 35.8 |
G | 5.1 | 3.3 | 59.5 | 4.5 | - | 66.5 | 2.7 | 0.7 | 87.0 | 4.4 | 2.7 | 63.2 |
H | 21.0 | 7.5 | 17.2 | 5.5 | - | 65.8 | 10.0 | 1.4 | 33.8 | 13.2 | 4.0 | 28.5 |
I | 9.5 | 3.8 | 40.0 | 3.0 | - | 74.2 | 4.9 | 0.9 | 63.9 | 9.3 | 3.2 | 40.1 |
J | 5.7 | 1.6 | - | 13.2 | - | - | 5.7 | 1.2 | - | 17.6 | 2.3 | - |
K | 11.4 | 1.7 | 21.0 | - | - | - | 9.5 | 1.4 | 26.8 | 19.6 | 2.6 | 13.9 |
L | 27.2 | 4.5 | 14.5 | 7.9 | - | 47.5 | 16.0 | 1.7 | 23.4 | 17.0 | 2.7 | 25.1 |
M | 12.3 | 3.4 | 27.5 | 3.0 | - | 82.5 | 7.3 | 1.0 | 40.7 | 12.8 | 3.4 | 25.5 |
N | 6.5 | 2.9 | 41.4 | 10.6 | - | 26.7 | 3.3 | 0.8 | 60.5 | 8.7 | 8.7 | 28.0 |
O | 10.4 | 3.2 | 49.2 | 12.4 | - | - | 9.0 | 1.8 | 56.2 | 11.4 | 2.9 | 43.1 |
MALE | FEMALE | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Adj. | MAE | RMSE | Adj. | MAE | RMSE | |||||||||||
A | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.508 | 8.90 | 12.36 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.442 | 8.31 | 12.67 |
B | 0.000 | 0.255 | 0.000 | 0.033 | 0.000 | 0.796 | 4.00 | 5.04 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.795 | 4.12 | 5.22 |
C | 0.351 | 0.000 | 0.000 | 0.000 | 0.000 | 0.892 | 6.95 | 8.77 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.903 | 6.16 | 7.73 |
D | 0.402 | 0.000 | 0.000 | 0.067 | 0.000 | 0.805 | 26.68 | 33.81 | 0.053 | 0.000 | 0.000 | 0.000 | 0.000 | 0.808 | 31.81 | 40.29 |
E | 0.094 | 0.000 | 0.000 | 0.000 | 0.000 | 0.811 | 38.55 | 49.18 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.819 | 38.27 | 48.95 |
F | 0.904 | 0.000 | 0.000 | 0.001 | 0.000 | 0.829 | 22.25 | 28.50 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.833 | 30.77 | 39.45 |
G | 0.264 | 0.000 | 0.000 | 0.001 | 0.000 | 0.845 | 2.74 | 3.46 | 0.52 | 0.000 | 0.000 | 0.000 | 0.000 | 0.85 | 2.44 | 3.14 |
H | 0.718 | 0.005 | 0.000 | 0.055 | 0.000 | 0.811 | 8.46 | 10.76 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.825 | 10.47 | 13.40 |
I | 0.019 | 0.000 | 0.000 | 0.354 | 0.000 | 0.841 | 4.44 | 5.71 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.848 | 4.99 | 6.44 |
J | 0.489 | 0.000 | 0.421 | 0.281 | 0.359 | 0.930 | 5.81 | 7.81 | 0.000 | 0.000 | 0.055 | 0.648 | 0.055 | 0.923 | 6.07 | 8.19 |
K | 0.600 | 0.000 | 0.000 | 0.128 | 0.001 | 0.903 | 10.10 | 13.26 | 0.000 | 0.000 | 0.007 | 0.009 | 0.111 | 0.920 | 8.91 | 11.51 |
L | 0.580 | 0.000 | 0.000 | 0.021 | 0.002 | 0.742 | 14.01 | 18.70 | 0.846 | 0.000 | 0.000 | 0.000 | 0.000 | 0.790 | 8.91 | 21.57 |
M | 0.011 | 0.000 | 0.000 | 0.113 | 0.000 | 0.810 | 7.10 | 9.29 | 0.012 | 0.000 | 0.000 | 0.000 | 0.000 | 0.835 | 6.69 | 8.70 |
N | 0.257 | 0.000 | 0.000 | 0.000 | 0.000 | 0.856 | 2.76 | 3.49 | 0.925 | 0.000 | 0.000 | 0.000 | 0.000 | 0.848 | 3.17 | 4.11 |
O | 0.000 | 0.034 | 0.000 | 0.980 | 0.015 | 0.679 | 8.54 | 10.78 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.689 | 8.45 | 10.81 |
MALE | FEMALE | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Adj. | MAE | RMSE | Adj. | MAE | RMSE | |||||||||||
A | 0.000 | 0.011 | 0.116 | 0.014 | 0.349 | 0.266 | 10.50 | 13.25 | 0.000 | 0.370 | 0.654 | 0.002 | 0.642 | 0.152 | 13.19 | 17.02 |
B | 0.000 | 0.863 | 0.000 | 0.030 | 0.001 | 0.671 | 12.01 | 15.09 | 0.002 | 0.374 | 0.000 | 0.902 | 0.028 | 0.606 | 9.45 | 12.14 |
C | 0.262 | 0.000 | 0.185 | 0.312 | 0.402 | 0.484 | 16.90 | 21.70 | 0.635 | 0.000 | 0.234 | 0.779 | 0.263 | 0.405 | 17.90 | 21.96 |
D | 0.000 | 0.137 | 0.000 | 0.000 | 0.000 | 0.866 | 24.46 | 31.34 | 0.049 | 0.632 | 0.000 | 0.400 | 0.001 | 0.740 | 33.96 | 43.56 |
E | 0.000 | 0.123 | 0.000 | 0.080 | 0.000 | 0.848 | 36.50 | 45.31 | 0.344 | 0.804 | 0.000 | 0.440 | 0.000 | 0.777 | 39.37 | 49.78 |
F | 0.000 | 0.574 | 0.000 | 0.000 | 0.001 | 0.887 | 20.79 | 26.68 | 0.000 | 0.892 | 0.000 | 0.000 | 0.026 | 0.855 | 22.34 | 28.38 |
G | 0.140 | 0.000 | 0.000 | 0.548 | 0.000 | 0.547 | 4.90 | 6.15 | 0.001 | 0.020 | 0.300 | 0.015 | 0.826 | 0.543 | 3.89 | 4.90 |
H | 0.000 | 0.000 | 0.122 | 0.000 | 0.370 | 0.712 | 15.26 | 19.72 | 0.019 | 0.625 | 0.000 | 0.249 | 0.001 | 0.800 | 11.09 | 14.11 |
I | 0.000 | 0.435 | 0.014 | 0.000 | 0.696 | 0.662 | 10.65 | 13.44 | 0.000 | 0.779 | 0.004 | 0.005 | 0.182 | 0.678 | 8.03 | 10.15 |
J | 0.592 | 0.000 | 0.054 | 0.209 | 0.091 | 0.649 | 15.59 | 19.39 | 0.323 | 0.000 | 0.875 | 0.862 | 0.830 | 0.646 | 14.29 | 18.05 |
K | 0.017 | 0.000 | 0.265 | 0.440 | 0.478 | 0.714 | 19.60 | 25.00 | 0.121 | 0.000 | 0.605 | 0.341 | 0.644 | 0.692 | 19.63 | 24.11 |
L | 0.000 | 0.000 | 0.076 | 0.000 | 0.026 | 0.859 | 17.12 | 22.15 | 0.000 | 0.000 | 0.109 | 0.000 | 0.402 | 0.840 | 16.71 | 21.59 |
M | 0.000 | 0.272 | 0.000 | 0.000 | 0.228 | 0.711 | 12.28 | 15.62 | 0.000 | 0.063 | 0.587 | 0.000 | 0.381 | 0.648 | 13.35 | 16.62 |
N | 0.000 | 0.029 | 0.004 | 0.000 | 0.154 | 0.533 | 8.07 | 10.28 | 0.000 | 0.494 | 0.470 | 0.000 | 0.210 | 0.385 | 9.31 | 11.61 |
O | 0.072 | 0.000 | 0.000 | 0.808 | 0.004 | 0.420 | 11.26 | 14.09 | 0.054 | 0.000 | 0.845 | 0.016 | 0.883 | 0.373 | 11.49 | 14.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartol, K.; Bojanić, D.; Petković, T.; Peharec, S.; Pribanić, T. Linear Regression vs. Deep Learning: A Simple Yet Effective Baseline for Human Body Measurement. Sensors 2022, 22, 1885. https://doi.org/10.3390/s22051885
Bartol K, Bojanić D, Petković T, Peharec S, Pribanić T. Linear Regression vs. Deep Learning: A Simple Yet Effective Baseline for Human Body Measurement. Sensors. 2022; 22(5):1885. https://doi.org/10.3390/s22051885
Chicago/Turabian StyleBartol, Kristijan, David Bojanić, Tomislav Petković, Stanislav Peharec, and Tomislav Pribanić. 2022. "Linear Regression vs. Deep Learning: A Simple Yet Effective Baseline for Human Body Measurement" Sensors 22, no. 5: 1885. https://doi.org/10.3390/s22051885
APA StyleBartol, K., Bojanić, D., Petković, T., Peharec, S., & Pribanić, T. (2022). Linear Regression vs. Deep Learning: A Simple Yet Effective Baseline for Human Body Measurement. Sensors, 22(5), 1885. https://doi.org/10.3390/s22051885