Tool-Condition Diagnosis Model with Shock-Sharpening Algorithm for Drilling Process
Abstract
:1. Introduction
2. Theoretical Background
3. Proposed Algorithm
3.1. Oversampling Technique
3.2. Jerk
3.3. Cutter Sampling Frequency
4. Support Vector Machine
5. Experiment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Feature | Equation | Feature | Equation |
---|---|---|---|
Mean | Skewness | ||
Root-mean-square (RMS) | Kurtosis | ||
Absolute mean | Form | ||
Amplitude of RMS | Peak | ||
Peak-to-peak | Margin | ||
Standard deviation | Pulse | ||
Center frequency (CF) | Standard deviation frequency (STDF) | ||
Root mean square frequency (RMSF) |
References
- Peng, C.Y.; Raihany, U.; Kuo, S.W.; Chen, Y.Z. Sound Detection Monitoring Tool in CNC Milling Sounds by K-Means Clustering Algorithm. Sensors 2021, 21, 4288. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Chen, G.; Dong, C.; Sun, S.; Shen, X. Data-Driven Digital Twin Technology for Optimized Control in Process Systems. ISA Trans. 2019, 95, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Park, B.; Lee, C. Fault Diagnosis Based on the Quantification of the Fault Features in a Rotary Machine. Appl. Soft Comp. 2020, 97, 106726. [Google Scholar] [CrossRef]
- Lee, Y.; Jo, M.; Cho, G.; Joo, C.; Lee, C. Impact of Sensor Data Characterization with Directional Nature of Fault and Statistical Feature Combination for Defect Detection on Roll-to-Roll Printed Electronics. Sensors 2021, 21, 8454. [Google Scholar] [CrossRef]
- Swaminathan, S.; Sankaranarayanan, S.; Kozlov, S.; Rodrigues, J.J.P.C. Compression-Aware Aggregation and Energy-Aware Routing in Iot–Fog-Enabled Forest Environment. Sensors 2021, 21, 4591. [Google Scholar] [CrossRef]
- Jo, M.; Kim, S.; Lee, C. Morphology Engineering for Compact Electrolyte Layer of Solid Oxide Fuel Cell with Roll-to-Roll Eco-production. Int.J. Precis. Eng. Manuf.-Green Technol. 2022, 9, 431–441. [Google Scholar] [CrossRef]
- Routio, M.; Säynätjoki, M. Tool Wear and Failure in the Drilling of Stainless Steel. J. Mater. Process. Technol. 1995, 52, 35–43. [Google Scholar] [CrossRef]
- Dan, L.; Mathew, J. Tool Wear and Failure Monitoring Techniques for Turning—A Review. Int. J. Mach. Tool. Manuf. 1990, 30, 579–598. [Google Scholar] [CrossRef]
- Patra, K.; Jha, A.; Szalay, T. Tool Condition Monitoring in Micro-Drilling Using Vibration Signals and Artificial Neural Network: Subtitle: TCM in Micro-Drilling Using Vibration Signals. In Proceedings of the International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), St. Petersburg, Russia, 16–19 May 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Zhu, K.P.; Wong, Y.S.; Hong, G.S. Wavelet Analysis of Sensor Signals for Tool Condition Monitoring: A Review and Some New Results. Int. J. Mach. Tool. Manuf. 2009, 49, 537–553. [Google Scholar] [CrossRef]
- Wang, C.; Huang, M.; Chung, T.T.; Young, H.T.; Li, K.M. Tool Condition Monitoring with Current Signals for a Low-Power Spindle. In Proceedings of the 2017 IEEE International Conference on Applied System Innovation: Applied System Innovation for Modern Technology (ICASI), Sapporo, Japan, 13–17 May 2017; pp. 686–689. [Google Scholar] [CrossRef]
- Sáez, A.J.; Polat, E.; Mandel, C.; Schüßler, M.; Kubina, B.; Scherer, T.; Lautenschläger, N.; Jakoby, R. Chipless Wireless Temperature Sensor for Machine Tools Based on a Dielectric Ring Resonator. Procedia Eng. 2016, 168, 1231–1236. [Google Scholar] [CrossRef]
- Totis, G.; Sortino, M. Development of a Modular Dynamometer for Triaxial Cutting Force Measurement in Turning. Int. J. Mach. Tool. Manuf. 2011, 51, 34–42. [Google Scholar] [CrossRef]
- Kalvoda, T.; Hwang, Y. A Cutter Tool Monitoring in Machining Process Using Hilbert-Huang Transform. Int. J. Mach. Tool. Manuf. 2010, 50, 495–501. [Google Scholar] [CrossRef]
- Li, T.; Shi, T.; Tang, Z.; Liao, G.; Duan, J.; Han, J.; He, Z. Real-Time Tool Wear Monitoring Using Thin-Film Thermocouple. J. Mater. Process. Technol. 2021, 288, 116901. [Google Scholar] [CrossRef]
- Jeong, M.J.; Lee, S.W.; Jang, W.K.; Kim, H.J.; Seo, Y.H.; Kim, B.H. Prediction of Drill Bit Breakage Using an Infrared Sensor. Sensors 2021, 21, 2808. [Google Scholar] [CrossRef]
- Krishnakumar, P.; Rameshkumar, K.; Ramachandran, K.I. Machine Learning Based Tool Condition Classification Using Acoustic Emission and Vibration Data in High Speed Milling Process Using Wavelet Features. Intell. Decis. Technol. 2018, 12, 265–282. [Google Scholar] [CrossRef]
- Patra, K.; Jha, A.K.; Szalay, T.; Ranjan, J.; Monostori, L. Artificial Neural Network Based Tool Condition Monitoring in Micro Mechanical Peck Drilling Using Thrust Force Signals. Precis. Eng. 2017, 48, 279–291. [Google Scholar] [CrossRef]
- Caggiano, A. Tool Wear Prediction in Ti-6Al-4V Machining through Multiple Sensor Monitoring and PCA Features Pattern Recognition. Sensors 2018, 18, 823. [Google Scholar] [CrossRef] [Green Version]
- Ranjan, J.; Patra, K.; Szalay, T.; Mia, M.; Gupta, M.K.; Song, Q.; Krolczyk, G.; Chudy, R.; Pashnyov, V.A.; Pimenov, D.Y. Artificial Intelligence-Based Hole Quality Prediction in Micro-Drilling Using Multiple Sensors. Sensors 2020, 20, 885. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Liu, Y.; Zhou, X.; Mou, A. Automatic Identification of Tool Wear Based on Convolutional Neural Network in Face Milling Process. Sensors 2019, 19, 3817. [Google Scholar] [CrossRef] [Green Version]
- Barry, J.; Byrne, G. Cutting Tool Wear in the Machining of Hardened Steels. Part II Cubic. Wear 2001, 247, 152–160. [Google Scholar] [CrossRef]
- Bandyopadhyay, B.P. Mechanism of Formation of Built-Up Edge. Precis. Eng. 1984, 6, 148–151. [Google Scholar] [CrossRef]
- Haber, R.E.; Jiménez, J.E.; Peres, C.R.; Alique, J.R. An Investigation of Tool-Wear Monitoring in a High-Speed Machining Process. Sens. Actuators A 2004, 116, 539–545. [Google Scholar] [CrossRef]
- Scheffer, C.; Heyns, P.S. Wear Monitoring in Turning Operations Using Vibration and Strain Measurements. Mech. Syst. Signal Process. 2001, 15, 1185–1202. [Google Scholar] [CrossRef]
- Wegener, K.; Bleicher, F.; Heisel, U.; Hoffmeister, H.W.; Möhring, H.C. Noise and Vibrations in Machine Tools. CIRP Ann. 2021, 70, 611–633. [Google Scholar] [CrossRef]
- El-Wardany, T.I.; Gao, D.; Elbestawi, M.A. Tool Condition Monitoring in Drilling Using Vibration Signature Analysis. Int. J. Mach. Tool. Manuf. 1996, 36, 687–711. [Google Scholar] [CrossRef]
- Prickett, P.W.; Johns, C. An Overview of Approaches to End Milling Tool Monitoring. Int. J. Mach. Tools Manuf. 1999, 39, 105–122. [Google Scholar] [CrossRef]
- Kull Neto, H.; Diniz, A.E.; Pederiva, R. Influence of Tooth Passing Frequency, Feed Direction, and Tool Overhang on the Surface Roughness of Curved Surfaces of Hardened Steel. Int. J. Adv. Manuf. Technol. 2016, 82, 753–764. [Google Scholar] [CrossRef]
- Lizhe Tan, J.J. Digital Signal Processing: Fundamentals and Applications; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Liu, R.; Ji, W.; Chang, L.; Liu, D.; Zhang, X. Improving SNR Estimation for Linearly Modulated Signals over SIMO Channels via Oversampling. In Proceedings of the 2015 IEEE 6th International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE), Shanghai, China, 28–30 October 2015; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 769–773. [Google Scholar]
- Schot, S.H. Jerk: The Time Rate of Change of Acceleration. Am. J. Phys. 1978, 46, 1090–1094. [Google Scholar] [CrossRef]
- Eichhorn, R.; Linz, S.J.; Hänggi, P. Transformations of Nonlinear Dynamical Systems to Jerky Motion and Its Application to Minimal Chaotic Flows. Phys. Rev. E 1998, 58, 7151–7164. [Google Scholar] [CrossRef] [Green Version]
- Abe, S. Support vector machines for pattern classificiation. In Advances in Pattern Recognition; Springer: London, UK, 2010; ISBN 978-1-84996-097-7. [Google Scholar]
- Javed, K.; Babri, H.A.; Saeed, M. Feature Selection Based on Class-Dependent Densities for High-Dimensional Binary Data. IEEE Trans. Knowl. Data Eng. 2012, 24, 465–477. [Google Scholar] [CrossRef]
- Li, Y.; Dai, W.; Zhang, W. Bearing Fault Feature Selection Method Based on Weighted Multidimensional Feature Fusion. IEEE Access 2020, 8, 19008–19025. [Google Scholar] [CrossRef]
- Singiresu, S.R. Mechanical Vibrations; Addison Wesley: Boston, MA, USA, 1995. [Google Scholar]
Feed Rate | Cutting Speed | RPM | Depth of Cut | Oil Condition |
---|---|---|---|---|
0.15 mm/rev | 31.4 m/min | 5000 rev/min | 10 mm | MQL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, B.; Lee, Y.; Yeo, M.; Lee, H.; Joo, C.; Lee, C. Tool-Condition Diagnosis Model with Shock-Sharpening Algorithm for Drilling Process. Sensors 2022, 22, 1975. https://doi.org/10.3390/s22051975
Park B, Lee Y, Yeo M, Lee H, Joo C, Lee C. Tool-Condition Diagnosis Model with Shock-Sharpening Algorithm for Drilling Process. Sensors. 2022; 22(5):1975. https://doi.org/10.3390/s22051975
Chicago/Turabian StylePark, Byeonghui, Yoonjae Lee, Myeonghwan Yeo, Haemi Lee, Changbeom Joo, and Changwoo Lee. 2022. "Tool-Condition Diagnosis Model with Shock-Sharpening Algorithm for Drilling Process" Sensors 22, no. 5: 1975. https://doi.org/10.3390/s22051975
APA StylePark, B., Lee, Y., Yeo, M., Lee, H., Joo, C., & Lee, C. (2022). Tool-Condition Diagnosis Model with Shock-Sharpening Algorithm for Drilling Process. Sensors, 22(5), 1975. https://doi.org/10.3390/s22051975