Flexible Ceramic Film Sensors for Free-Form Devices
Abstract
:1. Introduction
2. Sensor Materials and Properties
2.1. Thermistor Temperature Sensors
2.2. Humidity Sensors
2.3. Strain Sensors
2.4. Gas Sensors
2.5. Electrochemical Sensors
2.6. Optical and Magnetic Sensors
2.7. Related Components
3. Fabrication Process
3.1. Challenges and Solutions
3.2. Photocrystallization Process
3.3. Transferring Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, S.T.; Peng, H.; Sun, Q.; Venkatesh, S.; Chung, K.S.; Lau, S.C.; Zhou, Y.; Roy, V.A.L. An Overview of the Development of Flexible Sensors. Adv. Mater. 2017, 29, 1700375. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.V.; Mahaffey, K.W.; Hedlin, H.; Rumsfeld, J.S.; Garcia, A.; Ferris, T.; Balasubramanian, V.; Russo, A.M.; Rajmane, A.; Cheung, L.; et al. Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. N. Engl. J. Med. 2019, 381, 1909–1917. [Google Scholar] [CrossRef] [PubMed]
- Hernando, D.; Roca, S.; Sancho, J.; Alesanco, Á.; Bailón, R. Validation of the apple watch for heart rate variability measurements during relax and mental stress in healthy subjects. Sensors 2018, 18, 2619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasserlauf, J.; You, C.; Patel, R.; Valys, A.; Albert, D.; Passman, R. Smartwatch Performance for the Detection and Quantification of Atrial Fibrillation. Circ. Arrhythmia Electrophysiol. 2019, 12, e006834. [Google Scholar] [CrossRef]
- Shcherbina, A.; Mikael Mattsson, C.; Waggott, D.; Salisbury, H.; Christle, J.W.; Hastie, T.; Wheeler, M.T.; Ashley, E.A. Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. J. Pers. Med. 2017, 7, 3. [Google Scholar] [CrossRef]
- Turakhia, M.P.; Desai, M.; Hedlin, H.; Rajmane, A.; Talati, N.; Ferris, T.; Desai, S.; Nag, D.; Patel, M.; Kowey, P.; et al. Rationale and design of a large-scale, app-based study to identify cardiac arrhythmias using a smartwatch: The Apple Heart Study. Am. Heart J. 2019, 207, 66–75. [Google Scholar] [CrossRef]
- Bumgarner, J.M.; Lambert, C.T.; Hussein, A.A.; Cantillon, D.J.; Baranowski, B.; Wolski, K.; Lindsay, B.D.; Wazni, O.M.; Tarakji, K.G. Smartwatch Algorithm for Automated Detection of Atrial Fibrillation. J. Am. Coll. Cardiol. 2018, 71, 2381–2388. [Google Scholar] [CrossRef]
- Heikenfeld, J.; Jajack, A.; Rogers, J.; Gutruf, P.; Tian, L.; Pan, T.; Li, R.; Khine, M.; Kim, J.; Wang, J.; et al. Wearable sensors: Modalities, challenges, and prospects. Lab Chip 2018, 18, 217–248. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Liu, Y.; Zhao, Y.; Ren, Z.; Guo, C.F. Flexible Electronics: Stretchable Electrodes and Their Future. Adv. Funct. Mater. 2019, 29, 1805924. [Google Scholar] [CrossRef]
- Son, D.; Lee, J.; Qiao, S.; Ghaffari, R.; Kim, J.; Lee, J.E.; Song, C.; Kim, S.J.; Lee, D.J.; Jun, S.W.; et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 2014, 9, 397–404. [Google Scholar] [CrossRef]
- Furniturewalla, A.; Chan, M.; Sui, J.; Ahuja, K.; Javanmard, M. Fully integrated wearable impedance cytometry platform on flexible circuit board with online smartphone readout. Microsyst. Nanoeng. 2018, 4, 20. [Google Scholar] [CrossRef] [PubMed]
- Kos, M.; Kramberger, I. A Wearable Device and System for Movement and Biometric Data Acquisition for Sports Applications. IEEE Access 2017, 5, 6411–6420. [Google Scholar] [CrossRef]
- Maity, S.; Das, D.; Sen, S. Wearable health monitoring using capacitive voltage-mode Human Body Communication. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Korea, 11–15 July 2017; pp. 1–4. [Google Scholar] [CrossRef] [Green Version]
- Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwödiauer, R.; Graz, I.; Bauer-Gogonea, S.; et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013, 499, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Facchetti, A. Mechanically Flexible Conductors for Stretchable and Wearable E-Skin and E-Textile Devices. Adv. Mater. 2019, 31, 1901408. [Google Scholar] [CrossRef]
- Sun, J.Y.; Keplinger, C.; Whitesides, G.M.; Suo, Z. Ionic skin. Adv. Mater. 2014, 26, 7608–7614. [Google Scholar] [CrossRef]
- Lee, T.I.; Jang, W.S.; Lee, E.; Kim, Y.S.; Wang, Z.L.; Baik, H.K.; Myoung, J.M. Ultrathin self-powered artificial skin. Energy Environ. Sci. 2014, 7, 3994–3999. [Google Scholar] [CrossRef]
- Wu, W. Inorganic nanomaterials for printed electronics: A review. Nanoscale 2017, 9, 7342–7372. [Google Scholar] [CrossRef]
- Kamyshny, A.; Magdassi, S. Conductive nanomaterials for printed electronics. Small 2014, 10, 3515–3535. [Google Scholar] [CrossRef]
- Das, R.N.; Lin, H.T.; Lauffer, J.M.; Markovich, V.R. Printable electronics: Towards materials development and device fabrication. Circuit World 2011, 37, 38–45. [Google Scholar] [CrossRef]
- Yamamuro, S.; Sumiyama, K. Why do cubic nanoparticles favor a square array? Mechanism of shape-dependent arrangement in nanocube self-assemblies. Chem. Phys. Lett. 2006, 418, 166–169. [Google Scholar] [CrossRef]
- Minemawari, H.; Yamada, T.; Matsui, H.; Tsutsumi, J.Y.; Haas, S.; Chiba, R.; Kumai, R.; Hasegawa, T. Inkjet printing of single-crystal films. Nature 2011, 475, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.R.G.; Edirisinghe, M.J.; Coveney, P.V.; Eames, J. Combinatorial searches of inorganic materials using the ink-jet printer: Science, philosophy and technology. J. Eur. Ceram. Soc. 2001, 21, 2291–2299. [Google Scholar] [CrossRef]
- Kao, Z.K.; Hung, Y.H.; Liao, Y.C. Formation of conductive silver films via inkjet reaction system. J. Mater. Chem. 2011, 21, 18799–18803. [Google Scholar] [CrossRef]
- MacDonald, E.; Salas, R.; Espalin, D.; Perez, M.; Aguilera, E.; Muse, D.; Wicker, R.B. 3D printing for the rapid prototyping of structural electronics. IEEE Access 2014, 2, 234–242. [Google Scholar] [CrossRef]
- Kuang, X.; Roach, D.J.; Wu, J.; Hamel, C.M.; Ding, Z.; Wang, T.; Dunn, M.L.; Qi, H.J. Advances in 4D Printing: Materials and Applications. Adv. Funct. Mater. 2019, 29, 1805290. [Google Scholar] [CrossRef]
- Lehmhus, D.; Aumund-Kopp, C.; Petzoldt, F.; Godlinski, D.; Haberkorn, A.; Zöllmer, V.; Busse, M. Customized Smartness: A Survey on Links between Additive Manufacturing and Sensor Integration. Procedia Technol. 2016, 26, 284–301. [Google Scholar] [CrossRef]
- Javey, A.; Nam, S.W.; Friedman, R.S.; Yan, H.; Lieber, C.M. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 2007, 7, 773–777. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Su, S.; Cai, L.; Qiu, B.; Wang, N.; Xiong, J.; Yang, C.; Tao, X.; Chai, Y. Monolithic Integration of All-in-One Supercapacitor for 3D Electronics. Adv. Energy Mater. 2019, 9, 19–21. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, Y. Micro/Nanoscale 3D Assembly by Rolling, Folding, Curving, and Buckling Approaches. Adv. Mater. 2019, 31, 1901895. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Heer, B. Additive manufacturing of multi-material structures. Mater. Sci. Eng. R Reports 2018, 129, 1–16. [Google Scholar] [CrossRef]
- Lee, J.Y.; An, J.; Chua, C.K. Fundamentals and applications of 3D printing for novel materials. Appl. Mater. Today 2017, 7, 120–133. [Google Scholar] [CrossRef]
- Wong, K.V.; Hernandez, A. A Review of Additive Manufacturing. ISRN Mech. Eng. 2012, 2012, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Murr, L.E. A Metallographic Review of 3D Printing/Additive Manufacturing of Metal and Alloy Products and Components. Metallogr. Microstruct. Anal. 2018, 7, 103–132. [Google Scholar] [CrossRef] [Green Version]
- Sadie, J.A.; Subramanian, V. Three-dimensional inkjet-printed interconnects using functional metallic nanoparticle inks. Adv. Funct. Mater. 2014, 24, 6834–6842. [Google Scholar] [CrossRef]
- Gong, Y.; Cha, K.J.; Park, J.M. Deformation characteristics and resistance distribution in thermoforming of printed electrical circuits for in-mold electronics application. Int. J. Adv. Manuf. Technol. 2020, 108, 749–758. [Google Scholar] [CrossRef]
- Liu, X.; Li, D.; Fukutani, H.; Trudeau, P.; Khoun, L.; Mozenson, O.; Sampson, K.L.; Gallerneault, M.; Paquet, C.; Lacelle, T.; et al. UV-Sinterable Silver Oxalate-Based Molecular Inks and Their Application for In-Mold Electronics. Adv. Electron. Mater. 2021, 7, 2100194. [Google Scholar] [CrossRef]
- Lee, S.Y.; Jang, S.H.; Lee, H.K.; Kim, J.S.; Lee, S.K.; Song, H.J.; Jung, J.W.; Yoo, E.S.; Choi, J. The development and investigation of highly stretchable conductive inks for 3-dimensional printed in-mold electronics. Org. Electron. 2020, 85, 105881. [Google Scholar] [CrossRef]
- Ahn, J.; Kim, H.; Lee, K.J.; Jeon, S.; Kang, S.J.; Sun, Y.; Nuzzo, R.G.; Rogers, J.A. Heterogeneous Three-Dimensional Electronics by Use of Printed Semiconductor Nanomaterials. Science 2006, 961, 1754–1757. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Kim, Y.; Wang, H.; Ning, X.; Xu, C.; Suh, J.; Han, M.; Pagan-Diaz, G.J.; Lu, W.; Li, H.; et al. Compliant 3D frameworks instrumented with strain sensors for characterization of millimeter-scale engineered muscle tissues. Proc. Natl. Acad. Sci. USA 2021, 118, e2100077118. [Google Scholar] [CrossRef]
- Gullapalli, H.; Vemuru, V.S.M.; Kumar, A.; Botello-Mendez, A.; Vajtai, R.; Terrones, M.; Nagarajaiah, S.; Ajayan, P.M. Flexible piezoelectric zno-paper nanocomposite strain sensor. Small 2010, 6, 1641–1646. [Google Scholar] [CrossRef]
- Teymourian, H.; Barfidokht, A.; Wang, J. Electrochemical glucose sensors in diabetes management: An updated review (2010–2020). Chem. Soc. Rev. 2020, 49, 7671–7709. [Google Scholar] [CrossRef]
- Chung, M.; Fortunato, G.; Radacsi, N. Wearable flexible sweat sensors for healthcare monitoring: A review. J. R. Soc. Interface 2019, 16, 20190217. [Google Scholar] [CrossRef]
- Zhou, W.; He, Q.; Ye, H.; Ye, C.; Wu, X.; Chu, J. Recent advances in flexible sweat glucose biosensors. J. Phys. D Appl. Phys. 2021, 54, 423001. [Google Scholar] [CrossRef]
- Shin, J.; Jeong, B.; Kim, J.; Nam, V.B.; Yoon, Y.; Jung, J.; Hong, S.; Lee, H.; Eom, H.; Yeo, J.; et al. Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration. Adv. Mater. 2020, 32, 1905527. [Google Scholar] [CrossRef]
- Park, I.J.; Jeong, C.Y.; Cho, I.T.; Lee, J.H.; Cho, E.S.; Kwon, S.J.; Kim, B.; Cheong, W.S.; Song, S.H.; Kwon, H.I. Fabrication of amorphous InGaZnO thin-film transistor-driven flexible thermal and pressure sensors. Semicond. Sci. Technol. 2012, 27, 105019. [Google Scholar] [CrossRef]
- Nakajima, T.; Tsuchiya, T. Flexible thermistors: Pulsed laser-induced liquid-phase sintering of spinel Mn-Co-Ni oxide films on polyethylene terephthalate sheets. J. Mater. Chem. C 2015, 3, 3809–3816. [Google Scholar] [CrossRef]
- Nakajima, T.; Hanawa, S.; Tsuchiya, T. Highly stable flexible thermistor properties of spinel Mn-Co-Ni oxide films on silver/carbon micro-pinecone array composite electrodes. J. Appl. Phys. 2017, 122, 135309. [Google Scholar] [CrossRef]
- Trudeau, C.; Beaupré, P.; Bolduc, M.; Cloutier, S.G. All inkjet-printed perovskite-based bolometers. npj Flex. Electron. 2020, 4, 34. [Google Scholar] [CrossRef]
- Fujita, T.; Tanaka, H.; Inaba, H.; Nagatomo, N. Development and electrical properties of wurtzite (Al,Ti)N materials for thin film thermistors. J. Ceram. Soc. Jpn. 2016, 124, 653–658. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.C.; Kao, Z.K.; Liao, Y.C. Flexible miniaturized nickel oxide thermistor arrays via inkjet printing technology. ACS Appl. Mater. Interfaces 2013, 5, 12954–12959. [Google Scholar] [CrossRef]
- Nakajima, T.; Tsuchiya, T. Ultrathin Highly Flexible Featherweight Ceramic Temperature Sensor Arrays. ACS Appl. Mater. Interfaces 2020, 12, 36600–36608. [Google Scholar] [CrossRef]
- Pandey, R.K.; Hossain, M.D.; Moriyama, S.; Higuchi, M. Real-time humidity-sensing properties of ionically conductive Ni(ii)-based metallo-supramolecular polymers. J. Mater. Chem. A 2014, 2, 7754–7758. [Google Scholar] [CrossRef]
- Fioravanti, A.; Carotta, M.C. Year 2020: A snapshot of the last progress in flexible printed gas sensors. Appl. Sci. 2020, 10, 1741. [Google Scholar] [CrossRef] [Green Version]
- Monereo, O.; Boix, M.; Claramun, S.; Prades, J.D.; Cornet, A.; Cirera, A.; Merino, P.; Merino, C. Advanced performances in gas sensors: Stretchable, flexible, wireless, wearable. Procedia Eng. 2011, 25, 1425–1428. [Google Scholar] [CrossRef] [Green Version]
- Alrammouz, R.; Podlecki, J.; Abboud, P.; Sorli, B.; Habchi, R. A review on flexible gas sensors: From materials to devices. Sens. Actuators A Phys. 2018, 284, 209–231. [Google Scholar] [CrossRef]
- Sugahara, T.; Alipour, L.; Hirose, Y.; Ekubaru, Y.; Nakamura, J.; Ono, H.; Harada, N.; Suganuma, K. Formation of Metal-Organic Decomposition Derived Nanocrystalline Structure Titanium Dioxide by Heat Sintering and Photosintering Methods for Advanced Coating Process, and Its Volatile Organic Compounds’ Gas-Sensing Properties. ACS Appl. Electron. Mater. 2020, 2, 1670–1678. [Google Scholar] [CrossRef]
- Huang, W.D.; Cao, H.; Deb, S.; Chiao, M.; Chiao, J.C. A flexible pH sensor based on the iridium oxide sensing film. Sens. Actuators A Phys. 2011, 169, 1–11. [Google Scholar] [CrossRef]
- Manjakkal, L.; Dervin, S.; Dahiya, R. Flexible potentiometric pH sensors for wearable systems. RSC Adv. 2020, 10, 8594–8617. [Google Scholar] [CrossRef] [Green Version]
- Santos, L.; Neto, J.P.; Crespo, A.; Nunes, D.; Costa, N.; Fonseca, I.M.; Barquinha, P.; Pereira, L.; Silva, J.; Martins, R.; et al. WO3 nanoparticle-based conformable pH sensor. ACS Appl. Mater. Interfaces 2014, 6, 12226–12234. [Google Scholar] [CrossRef]
- Satake, Y.; Fujiwara, K.; Shiogai, J.; Seki, T.; Tsukazaki, A. Fe-Sn nanocrystalline films for flexible magnetic sensors with high thermal stability. Sci. Rep. 2019, 9, 3282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maria Joseph Raj, N.P.; Alluri, N.R.; Chandrasekhar, A.; Khandelwal, G.; Kim, S.J. Self-powered ferroelectric NTC thermistor based on bismuth titanate. Nano Energy 2019, 62, 329–337. [Google Scholar] [CrossRef]
- Li, S.; Kosek, A.; Jahangir, M.N.; Malhotra, R.; Chang, C.H. Inkjet Printing of Perovskites for Breaking Performance–Temperature Tradeoffs in Fabric-Based Thermistors. Adv. Funct. Mater. 2020, 31, 2006273. [Google Scholar] [CrossRef]
- Nakajima, T.; Hanawa, S.; Tsuchiya, T. Intermediate-temperature sensors based on La0.5Ba0.5MnO3/nanoporous anodic aluminum oxide multilayered film thermistors. J. Mater. Chem. C 2019, 7, 5193–5200. [Google Scholar] [CrossRef]
- Feteira, A. Negative temperature coefficient resistance (NTCR) ceramic thermistors: An industrial perspective. J. Am. Ceram. Soc. 2009, 92, 967–983. [Google Scholar] [CrossRef]
- Nakajima, T.; Shinoda, K.; Tsuchiya, T. UV-assisted nucleation and growth of oxide films from chemical solutions. Chem. Soc. Rev. 2014, 43, 2027–2041. [Google Scholar] [CrossRef]
- Nakajima, T.; Nakamura, T.; Tsuchiya, T. Flexible humidity sensors composed of graphite-like carbon micro-pinecone arrays. RSC Adv. 2016, 6, 95342–95348. [Google Scholar] [CrossRef] [Green Version]
- Borini, S.; White, R.; Wei, D.; Astley, M.; Haque, S.; Spigone, E.; Harris, N. Ultrafast Graphene Oxide Humidity Sensors. ACS Nano 2013, 7, 11166–11173. [Google Scholar] [CrossRef]
- Chu, J.; Peng, X.; Feng, P.; Sheng, Y.; Zhang, J. Study of humidity sensors based on nanostructured carbon films produced by physical vapor deposition. Sens. Actuators B Chem. 2013, 178, 508–513. [Google Scholar] [CrossRef]
- Qian, J.; Peng, Z.; Shen, Z.; Zhao, Z.; Zhang, G.; Fu, X. Positive impedance humidity sensors via single-component materials. Sci. Rep. 2016, 6, 25574. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Lan, C.; Zhou, Z.; Sun, P.; Wei, D.; Li, C. Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale 2017, 9, 6246–6253. [Google Scholar] [CrossRef] [PubMed]
- Erande, M.B.; Pawar, M.S.; Late, D.J. Humidity Sensing and Photodetection Behavior of Electrochemically Exfoliated Atomically Thin-Layered Black Phosphorus Nanosheets. ACS Appl. Mater. Interfaces 2016, 8, 11548–11556. [Google Scholar] [CrossRef] [PubMed]
- Awais, M.; Khan, M.U.; Hassan, A.; Bae, J.; Chattha, T.E. Printable Highly Stable and Superfast Humidity Sensor Based on Two Dimensional Molybdenum Diselenide. Sci. Rep. 2020, 10, 5509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, L.; Wang, X.; Zhang, D.; Ma, X.; Yu, S. Flexible wearable humidity sensor based on cerium oxide/graphitic carbon nitride nanocomposite self-powered by motion-driven alternator and its application for human physiological detection. J. Mater. Chem. A 2021, 9, 5619–5629. [Google Scholar] [CrossRef]
- Pawar, M.S.; Bankar, P.K.; More, M.A.; Late, D.J. Ultra-thin V2O5 nanosheet based humidity sensor, photodetector and its enhanced field emission properties. RSC Adv. 2015, 5, 88796–88804. [Google Scholar] [CrossRef]
- Farooq, Y.; Fareed, S.; Rafiq, M.A.; Sher, F. Nickel Manganese Oxide Nanoparticles Based Humidity Sensors. J. Electron. Mater. 2019, 48, 2289–2293. [Google Scholar] [CrossRef]
- Kuang, Q.; Lao, C.; Zhong, L.W.; Xie, Z.; Zheng, L. High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc. 2007, 129, 6070–6071. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhang, H.; Zheng, W.; Wang, W.; Huang, H.; Wang, C.; MacDiarmid, A.G.; Wei, Y. Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers. J. Am. Chem. Soc. 2008, 130, 5036–5037. [Google Scholar] [CrossRef]
- Takei, Y.; Yoshida, M.; Takeshita, T.; Kobayashi, T. Wearable muscle training and monitoring device. In Proceedings of the 2018 IEEE Micro Electro Mechanical Systems (MEMS), Belfast, UK, 21–25 January 2018; pp. 55–58. [Google Scholar] [CrossRef]
- Xu, K.; Lu, Y.; Yamaguchi, T.; Arie, T.; Akita, S.; Takei, K. Highly Precise Multifunctional Thermal Management-Based Flexible Sensing Sheets. ACS Nano 2019, 13, 14348–14356. [Google Scholar] [CrossRef]
- Kanazawa, S.; Ushijima, H. Development of a strain sensor matrix on mobilized flexible substrate for the imaging ofwind pressure distribution. Micromachines 2020, 11, 232. [Google Scholar] [CrossRef] [Green Version]
- Fujio, Y.; Xu, C.N.; Terasawa, Y.; Sakata, Y.; Yamabe, J.; Ueno, N.; Terasaki, N.; Yoshida, A.; Watanabe, S.; Murakami, Y. Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel. Int. J. Hydrogen Energy 2016, 41, 1333–1340. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Xu, C.N.; Yoshida, A.; Tu, D.; Ueno, N.; Kainuma, S. Scalable Elasticoluminescent Strain Sensor for Precise Dynamic Stress Imaging and Onsite Infrastructure Diagnosis. Adv. Mater. Technol. 2019, 4, 1800336. [Google Scholar] [CrossRef] [Green Version]
- Fujio, Y.; Xu, C.N.; Sakata, Y.; Ueno, N.; Terasaki, N. Invisible crack visualization and depth analysis by mechanoluminescence film. J. Alloys Compd. 2020, 832, 154900. [Google Scholar] [CrossRef]
- Di Natale, C.; Paolesse, R.; Martinelli, E.; Capuano, R. Solid-state gas sensors for breath analysis: A review. Anal. Chim. Acta 2014, 824, 1–17. [Google Scholar] [CrossRef]
- Miyamoto, A.; Lee, S.; Cooray, N.F.; Lee, S.; Mori, M.; Matsuhisa, N.; Jin, H.; Yoda, L.; Yokota, T.; Itoh, A.; et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 2017, 12, 907–913. [Google Scholar] [CrossRef]
- You, R.; Han, D.D.; Liu, F.; Zhang, Y.L.; Lu, G. Fabrication of flexible room-temperature NO2 sensors by direct laser writing of In2O3 and graphene oxide composites. Sens. Actuators B Chem. 2018, 277, 114–120. [Google Scholar] [CrossRef]
- Imran, M.; Alenezy, E.; Sabri, Y.; Wang, T.; Motta, N.; Tesfamichael, T.; Sonar, P.; Shafiei, M. Enhanced amperometric acetone sensing using electrospun non-stoichiometric WO3-x nanofibers. J. Mater. Chem. C 2021, 9, 671–678. [Google Scholar] [CrossRef]
- Pi, M.; Zheng, L.; Luo, H.; Duan, S.; Li, C.; Yang, J.; Zhang, D.; Chen, S. Improved acetone gas sensing performance based on optimization of a transition metal doped WO3 system at room temperature. J. Phys. D Appl. Phys. 2021, 54, 155107. [Google Scholar] [CrossRef]
- Deng, L.; Ding, X.; Zeng, D.; Tian, S.; Li, H.; Xie, C. Visible-light activate mesoporous WO3 sensors with enhanced formaldehyde-sensing property at room temperature. Sens. Actuators B Chem. 2012, 163, 260–266. [Google Scholar] [CrossRef]
- Fu, X.; Yang, P.; Xiao, X.; Zhou, D.; Huang, R.; Zhang, X.; Cao, F.; Xiong, J.; Hu, Y.; Tu, Y.; et al. Ultra-fast and highly selective room-temperature formaldehyde gas sensing of Pt-decorated MoO3 nanobelts. J. Alloys Compd. 2019, 797, 666–675. [Google Scholar] [CrossRef]
- Yi, J.; Lee, J.M.; Park, W.I. Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors. Sens. Actuators B Chem. 2011, 155, 264–269. [Google Scholar] [CrossRef]
- Niu, S.; Hu, Y.; Wen, X.; Zhou, Y.; Zhang, F.; Lin, L.; Wang, S.; Wang, Z.L. Enhanced performance of flexible ZnO nanowire based room-temperature oxygen sensors by piezotronic effect. Adv. Mater. 2013, 25, 3701–3706. [Google Scholar] [CrossRef]
- Zheng, Z.Q.; Yao, J.D.; Wang, B.; Yang, G.W. Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices. Sci. Rep. 2015, 5, 11070. [Google Scholar] [CrossRef]
- Kim, J.W.; Porte, Y.; Ko, K.Y.; Kim, H.; Myoung, J.M. Micropatternable Double-Faced ZnO Nanoflowers for Flexible Gas Sensor. ACS Appl. Mater. Interfaces 2017, 9, 32876–32886. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, M.; De La Flor, S.; Llobet, E.; Romero, A.; Ramírez, J.L. Performance of flexible chemoresistive gas sensors after having undergone automated bending tests. Sensors 2019, 19, 5190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, H.G.; Shim, Y.S.; Kim, D.H.; Jeong, H.Y.; Jeong, M.; Jung, J.Y.; Han, S.M.; Kim, J.K.; Kim, J.S.; Park, H.H.; et al. Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors. Sci. Rep. 2012, 2, 588. [Google Scholar] [CrossRef] [Green Version]
- Perfecto, T.M.; Zito, C.A.; Mazon, T.; Volanti, D.P. Flexible room-temperature volatile organic compound sensors based on reduced graphene oxide-WO3·0.33H2O nano-needles. J. Mater. Chem. C 2018, 6, 2822–2829. [Google Scholar] [CrossRef]
- He, Q.; Zeng, Z.; Yin, Z.; Li, H.; Wu, S.; Huang, X. Fabrication of Flexible MoS2 Thin-Film Transistor Arrays for Practical Gas-Sensing Applications. Small 2012, 8, 2994–2999. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Xie, D.; Xu, J.; Xia, Y.; Li, W.; Xiang, L.; Li, Z.; Xu, S.; Komarneni, S. Flexible room-temperature formaldehyde sensors based on rGO film and rGo/MoS2 hybrid film. Nanotechnology 2017, 28, 325501. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, T.; Yang, C.; Chen, J.; Agrawal, D.K.; Mao, Z.; Wang, D. Tunable thermal quenching properties of Na3Sc2(PO4)3:Eu2+ phosphors tailored by phase transformation details. Dalton Trans. 2020, 49, 3615–3621. [Google Scholar] [CrossRef]
- Al Shboul, A.; Shih, A.; Izquierdo, R. A Flexible Indium Oxide Sensor with Anti-Humidity Property for Room Temperature Detection of Hydrogen Sulfide. IEEE Sens. J. 2021, 21, 9667–9674. [Google Scholar] [CrossRef]
- Alvarado, M.; Navarrete, É.; Romero, A.; Ramírez, J.L.; Llobet, E. Flexible gas sensors employing octahedral indium oxide films. Sensors 2018, 18, 999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knobelspies, S.; Bierer, B.; Id, A.D.; Takabayashi, A.; Antonio, G.; Id, S.; Id, G.C.; Perez, A.O.; Wöllenstein, J.; Id, S.P.; et al. Photo-Induced Room-Temperature Gas Sensing with Flexible Plastic Foil. Sensors 2018, 18, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perillo, P.M.; Rodriguez, D.F. Low temperature trimethylamine flexible gas sensor based on TiO2 membrane nanotubes. J. Alloys Compd. 2016, 657, 765–769. [Google Scholar] [CrossRef]
- Vidiš, M.; Shpetnyi, I.O.; Roch, T.; Satrapinskyy, L.; Patrnčiak, M.; Plecenik, A.; Plecenik, T. Flexible hydrogen gas sensor based on a capacitor-like Pt/TiO2/Pt structure on polyimide foil. Int. J. Hydrogen Energy 2021, 46, 19217–19228. [Google Scholar] [CrossRef]
- Andrysiewicz, W.; Krzeminski, J.; Skarżynski, K.; Marszalek, K.; Sloma, M.; Rydosz, A. Flexible Gas Sensor Printed on a Polymer Substrate for Sub-ppm Acetone Detection. Electron. Mater. Lett. 2020, 16, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Hung, N.M.; Nguyen, C.V.; Arepalli, V.K.; Kim, J.; Chinh, N.D.; Nguyen, T.D.; Seo, D.; Kim, E. Defect-Induced Gas-Sensing Properties of a Flexible SnS Sensor under UV Illumination. Sensors 2020, 20, 5701. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.K.; Jeong, S.Y.; Moon, Y.K.; Jo, Y.M.; Yoon, J.W.; Lee, J.H. Exclusive and ultrasensitive detection of formaldehyde at room temperature using a flexible and monolithic chemiresistive sensor. Nat. Commun. 2021, 12, 4955. [Google Scholar] [CrossRef]
- Huang, J.; Zhu, Y.; Yang, X.; Chen, W.; Zhou, Y.; Li, C. Flexible 3D porous CuO nanowire arrays for enzymeless glucose sensing: In situ engineered versus ex situ piled. Nanoscale 2015, 7, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Archana, V.; Xia, Y.; Fang, R.; Gnana Kumar, G. Hierarchical CuO/NiO-Carbon Nanocomposite Derived from Metal Organic Framework on Cello Tape for the Flexible and High Performance Nonenzymatic Electrochemical Glucose Sensors. ACS Sustain. Chem. Eng. 2019, 7, 6707–6719. [Google Scholar] [CrossRef]
- Si, P.; Dong, X.C.; Chen, P.; Kim, D.H. A hierarchically structured composite of Mn3O4/3D graphene foam for flexible nonenzymatic biosensors. J. Mater. Chem. B 2013, 1, 110–115. [Google Scholar] [CrossRef]
- Sha, R.; Vishnu, N.; Badhulika, S. MoS2 based ultra-low-cost, flexible, non-enzymatic and non-invasive electrochemical sensor for highly selective detection of Uric acid in human urine samples. Sens. Actuators B Chem. 2019, 279, 53–60. [Google Scholar] [CrossRef]
- Xu, W.; Lu, J.; Huo, W.; Li, J.; Wang, X.; Zhang, C.; Gu, X.; Hu, C. Direct growth of CuCo2S4 nanosheets on carbon fiber textile with enhanced electrochemical pseudocapacitive properties and electrocatalytic properties towards glucose oxidation. Nanoscale 2018, 10, 14304–14313. [Google Scholar] [CrossRef]
- Munje, R.D.; Muthukumar, S.; Prasad, S. Lancet-free and label-free diagnostics of glucose in sweat using Zinc Oxide based flexible bioelectronics. Sens. Actuators B Chem. 2017, 238, 482–490. [Google Scholar] [CrossRef]
- Rim, Y.S.; Bae, S.H.; Chen, H.; Yang, J.L.; Kim, J.; Andrews, A.M.; Weiss, P.S.; Yang, Y.; Tseng, H.R. Printable Ultrathin Metal Oxide Semiconductor-Based Conformal Biosensors. ACS Nano 2015, 9, 12174–12181. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Gu, L.; Zhang, Q.; Wu, J.; Long, Y.; Fan, Z. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat. Commun. 2014, 5, 4007. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Liu, K.; Chen, X.; Qiao, B.; Ma, H.; Liu, D.; Liu, L.; Shen, D. High-performance flexible UV photodetector based on self-supporting ZnO nano-networks fabricated by substrate-free chemical vapor deposition. Nanotechnology 2021, 32, 475201. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.J.; Ryu, S.R.; Kumar, G.M.; Cho, H.D.; Kim, D.Y.; Ilanchezhiyan, P. Piezo-phototronic effect triggered flexible UV photodetectors based on ZnO nanosheets/GaN nanorods arrays. Appl. Surf. Sci. 2021, 558, 149896. [Google Scholar] [CrossRef]
- Cai, W.; Wang, J.; He, Y.; Liu, S.; Xiong, Q.; Liu, Z.; Zhang, Q. Strain-Modulated Photoelectric Responses from a Flexible α-In2Se3/3R MoS2 Heterojunction. Nano-Micro Lett. 2021, 13, 74. [Google Scholar] [CrossRef]
- Wang, S.; Wu, C.; Wu, F.; Zhang, F.; Liu, A.; Zhao, N.; Guo, D. Flexible, transparent and self-powered deep ultraviolet photodetector based on Ag NWs/amorphous gallium oxide Schottky junction for wearable devices. Sens. Actuators A Phys. 2021, 330, 112870. [Google Scholar] [CrossRef]
- Pannetier-Lecoeur, M.; Parkkonen, L.; Sergeeva-Chollet, N.; Polovy, H.; Fermon, C.; Fowley, C. Magnetocardiography with sensors based on giant magnetoresistance. Appl. Phys. Lett. 2011, 98, 153705. [Google Scholar] [CrossRef] [Green Version]
- Loong, L.M.; Lee, W.; Qiu, X.; Yang, P.; Kawai, H.; Saeys, M.; Ahn, J.H.; Yang, H. Flexible MgO Barrier Magnetic Tunnel Junctions. Adv. Mater. 2016, 28, 4983–4990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, P.C.; Chen, P.F.; Do, T.H.; Hsieh, Y.H.; Ma, C.H.; Ha, T.D.; Wu, K.H.; Wang, Y.J.; Li, H.B.; Chen, Y.C.; et al. Heteroepitaxy of Fe3O4/Muscovite: A New Perspective for Flexible Spintronics. ACS Appl. Mater. Interfaces 2016, 8, 33794–33801. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Lu, X.; Ma, Z.; Xie, C.; Zheng, Z. Chemical formation of soft metal electrodes for flexible and wearable electronics. Chem. Soc. Rev. 2018, 47, 4611–4641. [Google Scholar] [CrossRef]
- Im, H.G.; Jeong, S.; Jin, J.; Lee, J.; Youn, D.Y.; Koo, W.T.; Kang, S.B.; Kim, H.J.; Jang, J.; Lee, D.; et al. Hybrid crystalline-ITO/metal nanowire mesh transparent electrodes and their application for highly flexible perovskite solar cells. NPG Asia Mater. 2016, 8, e282. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.H.; Kim, J.; Noh, Y.J.; Na, S.I.; Kim, H.K. Ag nanowire-embedded ITO films as a near-infrared transparent and flexible anode for flexible organic solar cells. Sol. Energy Mater. Sol. Cells 2013, 110, 147–153. [Google Scholar] [CrossRef]
- Gong, L.; Lu, J.; Ye, Z. Transparent and conductive Ga-doped ZnO films grown by RF magnetron sputtering on polycarbonate substrates. Sol. Energy Mater. Sol. Cells 2010, 94, 937–941. [Google Scholar] [CrossRef]
- Tsuchiya, T.; Nakajima, T.; Uzawa, Y. Flexible and Epitaxial Metal Oxide Thin Film Growth by Photoreaction Processing for Electrical and Optical Applications. Chem.-A Eur. J. 2020, 26, 9261–9276. [Google Scholar] [CrossRef]
- Guo, F.; Shi, Z.; Yang, B.; Liu, Y.; Zhao, S. Flexible lead-free Na0.5Bi0.5TiO3–EuTiO3 solid solution film capacitors with stable energy storage performances. Scr. Mater. 2020, 184, 52–56. [Google Scholar] [CrossRef]
- Liang, Z.; Liu, M.; Shen, L.; Lu, L.; Ma, C.; Lu, X.; Lou, X.; Jia, C.L. All-Inorganic Flexible Embedded Thin-Film Capacitors for Dielectric Energy Storage with High Performance. ACS Appl. Mater. Interfaces 2019, 11, 5247–5255. [Google Scholar] [CrossRef]
- Liang, Z.; Ma, C.; Shen, L.; Lu, L.; Lu, X.; Lou, X.; Liu, M.; Jia, C.L. Flexible lead-free oxide film capacitors with ultrahigh energy storage performances in extremely wide operating temperature. Nano Energy 2019, 57, 519–527. [Google Scholar] [CrossRef]
- Bin, C.; Hou, X.; Xie, Y.; Zhang, J.; Yang, H.; Xu, L.; Wei, H.; Wang, J. Ultrahigh Energy Storage Performance of Flexible BMT-Based Thin Film Capacitors. Small 2021, 18, 2106209. [Google Scholar] [CrossRef] [PubMed]
- Bakaul, S.R.; Serrao, C.R.; Lee, O.; Lu, Z.; Yadav, A.; Carraro, C.; Maboudian, R.; Ramesh, R.; Salahuddin, S. High Speed Epitaxial Perovskite Memory on Flexible Substrates. Adv. Mater. 2017, 29, 1605699. [Google Scholar] [CrossRef]
- Mizuno, Y.; Byun, I.; Kim, B.; Ichiki, M. Transfer Methods of PZT Thin Capacitor to Flexible Polymer by Self-Assembled Monolayers. Electron. Commun. Jpn. 2016, 99, 96–102. [Google Scholar] [CrossRef]
- Bretos, I.; Jiménez, R.; Wu, A.; Kingon, A.I.; Vilarinho, P.M. Activated Solutions Enabling Low-Temperature Processing of Functional Ferroelectric Oxides for Flexible Electronics. Adv. Mater. 2014, 26, 1405–1409. [Google Scholar] [CrossRef]
- Guan, C.; Zhao, W.; Hu, Y.; Ke, Q.; Li, X.; Zhang, H.; Wang, J. High-Performance Flexible Solid-State Ni/Fe Battery Consisting of Metal Oxides Coated Carbon Cloth/Carbon Nanofiber Electrodes. Adv. Energy Mater. 2016, 6, 1601034. [Google Scholar] [CrossRef]
- Wu, W.; Wei, Z.; Wang, J.; Shang, J.; Wang, M.; Chi, S.S.; Wang, Q.; Du, L.; Zhang, T.; Zheng, Z.; et al. Enabling high-energy flexible solid-state lithium ion batteries at room temperature. Chem. Eng. J. 2021, 424, 130335. [Google Scholar] [CrossRef]
- Yu, Z.; Jiao, S.; Li, S.; Chen, X.; Song, W.L.; Teng, T.; Tu, J.; Chen, H.S.; Zhang, G.; Fang, D.N. Flexible Stable Solid-State Al-Ion Batteries. Adv. Funct. Mater. 2019, 29, 1–9. [Google Scholar] [CrossRef]
- Tang, G.; Yan, F. Recent progress of flexible perovskite solar cells. Nano Today 2021, 39, 101155. [Google Scholar] [CrossRef]
- Han, G.S.; Jung, H.S.; Park, N.G. Recent cutting-edge strategies for flexible perovskite solar cells toward commercialization. Chem. Commun. 2021, 57, 11604–11612. [Google Scholar] [CrossRef]
- Yang, P.; Mai, W. Flexible solid-state electrochemical supercapacitors. Nano Energy 2014, 8, 274–290. [Google Scholar] [CrossRef]
- Park, K.I.; Son, J.H.; Hwang, G.T.; Jeong, C.K.; Ryu, J.; Koo, M.; Choi, I.; Lee, S.H.; Byun, M.; Wang, Z.L.; et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 2014, 26, 2514–2520. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Tang, H.; Sodano, H.A. Scalable synthesis of morphotropic phase boundary lead zirconium titanate nanowires for energy harvesting. Adv. Mater. 2014, 26, 7547–7554. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Liao, J.; Wang, J.; Qiu, Y.; Yang, Q.; Zhang, M.; Zhao, Y.; Qin, L.; Xue, H.; Xiong, Z.; et al. Highly oriented BaTiO3 film self-assembled using an interfacial strategy and its application as a flexible piezoelectric generator for wind energy harvesting. J. Mater. Chem. A 2015, 3, 9965–9971. [Google Scholar] [CrossRef] [Green Version]
- Kitsomboonloha, R.; Baruah, S.; Myint, M.T.Z.; Subramanian, V.; Dutta, J. Selective growth of zinc oxide nanorods on inkjet printed seed patterns. J. Cryst. Growth 2009, 311, 2352–2358. [Google Scholar] [CrossRef]
- Joya, Y.F.; Liu, Z. Formation of ultraviolet laser-annealed mesoporous anatase films by a sol-gel process. Scr. Mater. 2009, 60, 467–470. [Google Scholar] [CrossRef]
- Tsuchiya, T.; Watanabe, A.; Imai, Y.; Niino, H.; Yamaguchi, I.; Manabe, T.; Kumagai, T.; Mizuta, S. Direct conversion of titanium alkoxide into crystallized TiO2 (rutile) using coating photolysis process with ArF excimer laser. Jpn. J. Appl. Phys. Part 2 Lett. 1999, 38, 823–825. [Google Scholar] [CrossRef]
- Sandu, C.S.; Teodorescu, V.S.; Ghica, C.; Canut, B.; Blanchin, M.G.; Roger, J.A.; Brioude, A.; Bret, T.; Hoffmann, P.; Garapon, C. Densification and crystallization of SnO2:Sb sol-gel films using excimer laser annealing. Appl. Surf. Sci. 2003, 208–209, 382–387. [Google Scholar] [CrossRef]
- Nagase, T.; Ooie, T.; Sakakibara, J. Novel approach to prepare zinc oxide films: Excimer laser irradiation of sol-gel derived precursor films. Thin Solid Films 1999, 357, 151–158. [Google Scholar] [CrossRef]
- Imai, H.; Tominaga, A.; Hirashima, H.; Toki, M.; Asakuma, N. Ultraviolet-reduced reduction and crystallization of indium oxide films. J. Appl. Phys. 1999, 85, 203–207. [Google Scholar] [CrossRef]
- Nishikawa, M.; Nakajima, T.; Manabe, T.; Okutani, T.; Tsuchiya, T. Preparation of polycrystalline VO2 films on glass and TiO2/glass substrates by means of excimer laser assisted metal organic deposition. J. Ceram. Soc. Jpn. 2010, 118, 788–791. [Google Scholar] [CrossRef] [Green Version]
- Tsuchiya, T.; Watanabe, A.; Imai, Y.; Niino, H.; Yamaguchi, I.; Manabe, T.; Kumagai, T.; Mizuta, S. Preparation of PbTiO3 thin films using a coating photolysis process with ArF excimer laser. Jpn. J. Appl. Phys. Part 2 Lett. 2000, 39, 866–868. [Google Scholar] [CrossRef]
- Halder, S.; Boettger, U.; Schneller, T.; Waser, R.; Baldus, O.; Jacobs, P.; Wehner, M. Laser annealing of BST thin films with reduced cracking at an elevated temperature. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2006, 133, 235–240. [Google Scholar] [CrossRef]
- Nakajima, T.; Tsuchiya, T.; Kumagai, T. Low-temperature fabrication of red phosphor Ca0.997Pr0.002TiO3 thin film using excimer laser assisted metal organic deposition. Jpn. J. Appl. Phys. Part 2 Lett. 2007, 46, 365–368. [Google Scholar] [CrossRef]
- Nakajima, T.; Tsuchiya, T.; Daoudi, K.; Ichihara, M.; Ueda, Y.; Kumagai, T. Epitaxial a-site ordered perovskite manganite SmBaMn2O6 film on SrTiO3(001): Fabrication, structure, and physical property. Chem. Mater. 2007, 19, 5355–5362. [Google Scholar] [CrossRef]
- Nakajima, T.; Tsuchiya, T.; Kumagai, T. Facile on-demand oriented growth of perovskite oxide thin films: Applications of Dion-Jacobson phase as seed layer. CrystEngComm 2011, 13, 158–166. [Google Scholar] [CrossRef]
- Nakajima, T.; Kobayashi, K.; Shinoda, K.; Tsuchiya, T. Unconventional upright layer orientation and considerable enhancement of proton-electron conductivity in Dion-Jacobson perovskite thin films. CrystEngComm 2014, 16, 4113–4119. [Google Scholar] [CrossRef]
- Daoudi, K.; Tsuchiya, T.; Nakajima, T.; Fouzri, A.; Oueslati, M. Epitaxial growth of La0.7Sr0.3CoO3 thin films on SrTiO3 substrates by metal-organic deposition. J. Alloys Compd. 2010, 506, 483–487. [Google Scholar] [CrossRef]
- Queraltó, A.; Pérez Del Pino, A.; De La Mata, M.; Arbiol, J.; Obradors, X.; Puig, T. Ultrafast crystallization of Ce0.9Zr0.1O2−y epitaxial films on flexible technical substrates by pulsed laser irradiation of chemical solution derived precursor layers. Cryst. Growth Des. 2015, 15, 1957–1967. [Google Scholar] [CrossRef] [Green Version]
- Queraltó, A.; Pérez Del Pino, A.; De La Mata, M.; Arbiol, J.; Tristany, M.; Gómez, A.; Obradors, X.; Puig, T. Growth of ferroelectric Ba0.8Sr0.2TiO3 epitaxial films by ultraviolet pulsed laser irradiation of chemical solution derived precursor layers. Appl. Phys. Lett. 2015, 106, 2–6. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, T.; Tsuchiya, T.; Ichihara, M.; Nagai, H.; Kumagai, T. Epitaxial growth mechanism for perovskite oxide thin films under pulsed laser irradiation in chemical solution deposition process. Chem. Mater. 2008, 20, 7344–7351. [Google Scholar] [CrossRef]
- Nakajima, T.; Tsuchiya, T.; Ichihara, M.; Nagai, H.; Kumagai, T. Effective-time of pulsed photothermal heating for polycrystalline nucleation of perovskite oxide films from an amorphous matrix. Appl. Phys. Express 2009, 2, 2–4. [Google Scholar] [CrossRef]
- Nakajima, T.; Shinoda, K.; Tsuchiya, T. A universal value of effective annealing time for rapid oxide nucleation and growth under pulsed ultraviolet laser irradiation. Phys. Chem. Chem. Phys. 2013, 15, 14384–14389. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, T.; Tsuchiya, T.; Ichihara, M.; Nagai, H.; Kumagai, T. Amorphous film thickness dependence for epitaxy of perovskite oxide films under excimer laser irradiation. Appl. Surf. Sci. 2009, 255, 9775–9778. [Google Scholar] [CrossRef]
- Nakajima, T.; Tsuchiya, T.; Kumagai, T. Perfect uniaxial growth of Dion-Jacobson perovskite RbLaNb2O7 thin films under pulsed photothermal gradient heating. Cryst. Growth Des. 2010, 10, 4861–4867. [Google Scholar] [CrossRef]
- Dubourg, G.; Radović, M. Multifunctional Screen-Printed TiO2 Nanoparticles Tuned by Laser Irradiation for a Flexible and Scalable UV Detector and Room-Temperature Ethanol Sensor. ACS Appl. Mater. Interfaces 2019, 11, 6257–6266. [Google Scholar] [CrossRef]
- Tomczyk, M.; Bretos, I.; Jiménez, R.; Mahajan, A.; Venkata Ramana, E.; Lourdes Calzada, M.; Vilarinho, P.M. Direct fabrication of BiFeO3 thin films on polyimide substrates for flexible electronics. J. Mater. Chem. C 2017, 5, 12529–12537. [Google Scholar] [CrossRef]
- Nakajima, T.; Isobe, M.; Tsuchiya, T.; Ueda, Y.; Kumagai, T. Direct fabrication of metavanadate phosphor films on organic substrates for white-light-emitting devices. Nat. Mater. 2008, 7, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Park, S.; Kim, S.; Kim, B.K.; Choi, Y.; Hwang, J.H.; Kim, H.J. Flash lamp annealing of indium tin oxide thin-films deposited on polyimide backplanes. Thin Solid Films 2017, 628, 88–95. [Google Scholar] [CrossRef]
- Jeong, C.K.; Park, K.I.; Son, J.H.; Hwang, G.T.; Lee, S.H.; Park, D.Y.; Lee, H.E.; Lee, H.K.; Byun, M.; Lee, K.J. Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy Environ. Sci. 2014, 7, 4035–4043. [Google Scholar] [CrossRef]
- Jeong, C.K.; Han, J.H.; Palneedi, H.; Park, H.; Hwang, G.T.; Joung, B.; Kim, S.G.; Shin, H.J.; Kang, I.S.; Ryu, J.; et al. Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film. APL Mater. 2017, 5, 074102. [Google Scholar] [CrossRef]
- Lu, D.; Baek, D.J.; Hong, S.S.; Kourkoutis, L.F.; Hikita, Y.; Hwang, H.Y. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 2016, 15, 1255–1260. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, H.; Morita, Y.; Kusunoki, M.; Hontsu, S.; Tanaka, H.; Endo, T. Preparation of [100] oriented SrTiO3 thin films on flexible polymer sheets. Jpn. J. Appl. Phys. 2014, 53, 05FB06. [Google Scholar] [CrossRef]
- Nishikawa, H.; Umatani, S.; Mizuyama, T.; Hiraoka, A.; Mikami, K. Giant Wrinkles on the Surface of Epitaxial BaTiO3 Thin Films with Drastic Shrinkage during Transfer from a MgO(100) Single-Crystal Substrate to a Flexible Polyethylene Terephthalate Sheet. Sensors 2021, 21, 7326. [Google Scholar] [CrossRef]
- Kozuka, H.; Yamano, A.; Fukui, T.; Uchiyama, H.; Takahashi, M.; Yoki, M.; Akase, T. Large area ceramic thin films on plastics: A versatile route via solution processing. J. Appl. Phys. 2012, 111, 016106. [Google Scholar] [CrossRef]
Material | B (K) | Substrate | Fabrication Process | Ref. |
---|---|---|---|---|
NiO | 4337 | Polyimide | Inkjet printing of nanoparticles and drying | [52] |
NiO | 8162 | PET | Monolithic laser-induced reductive sintering | [46] |
Ti1−xAlxN | 2525 | Polyimide | RF magnetron reactive sputtering | [51] |
Mn1.56Co0.96Ni0.48O4 | 4429 | PET | Photocrystallization of nanoparticles | [48] |
Bi4Ti3O12 | 6515 | Polyimide | Nanoparticle paste deposition and drying | [63] |
Cs2SnI6 | 4400 | Polyester | Inkjet printing of solutions and drying | [64] |
amorphous-InGaZnO | 2929 | Metal foil | RF magnetron reactive sputtering | [47] |
Sm0.5Sr0.5Mn0.9Ni0.1O3 | 2820 | Polyimide (t: 5 μm) | Photocrystallization of nanoparticles | [53] |
La0.5Ba0.5MnO3 | 2626 | Al foil | Photocrystallization of nanoparticles | [65] |
Material | Sensitivity (%) | Response Time (s) | Recovery Time (s) | Ref. |
---|---|---|---|---|
WO3−x | 276.8 (11–95%RH) r | 6 | 100 | [71] |
WS2 | 2357 (20–90%RH) r | 5 (35–40% RH) | 6 (35–40%RH) | [72] |
P (Black) | 521 (32–97%RH) r | 101 | 26 | [73] |
MoSe2 | 625 (0–90%RH) c | 1.87 | 2.13 | [74] |
CeO2/g-C3N4 | >700,000 (0–97%RH) c | 12 (0–43% RH) | — | [75] |
V2O5 | 45.3 (11–97%RH) r | 240 | 300 | [76] |
Ni-doped Mn3O4 | 70 (11–44%RH) r | 120 | 141 | [77] |
SnO2 | 3200 (5–85%RH) r | 120–170 | 20–60 | [78] |
LiCl-TiO2 | 100,000 (11–95%RH) r | 3 | 7 | [79] |
Material | Morphology | Gas | Target Gas Concentration | Ref. |
---|---|---|---|---|
ZnO | Nanorods | Ethanol | 10 ppm | [93] |
ZnO | Nanowires | Oxygen | 16 Torr | [94] |
ZnO | Nanoparticles | Oxygen | 200 ppm | [95] |
ZnO | Nanoflowers | NO2 | 500 ppm | [96] |
WO3 | Nanowires | H2 | 500 ppm | [97] |
WO3 | Nanocolumnar | NO2 | 5 ppm | [98] |
WO3·0.33H2O | Nanoneedles | Isopropanol | 100 ppm | [99] |
rGO/MoS2 | Nanosheets | NO2 | 1.2 ppm | [100] |
rGO/MoS2 | Nanosheets | Formaldehyde | 2.5 ppm | [101] |
SnO2/Zn2SnO4 | Nanoparticles | NH3 | 100 ppm | [102] |
In2O3 | Nanoparticles | H2S | 100 ppb | [103] |
In2O3 | Nanoparticles | NH3 | 10 ppm | [104] |
Amorphous-IGZO | Compact | NO2 | 5 ppm | [105] |
TiO2 | Nanopore network | Methanol | 50 ppm | [58] |
TiO2 | Nanotubes | Trimethylamine | 40 ppm | [106] |
TiO2 | Compact | H2 | 300 ppm | [107] |
ZIF-7/TiO2 | Nanoparticles | Formaldehyde | 5 ppm | [107] |
CuO | Compact | Acetone | 0.8 ppm | [108] |
SnS | Compact | NO2 | 5 ppm | [109] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakajima, T.; Fujio, Y.; Sugahara, T.; Tsuchiya, T. Flexible Ceramic Film Sensors for Free-Form Devices. Sensors 2022, 22, 1996. https://doi.org/10.3390/s22051996
Nakajima T, Fujio Y, Sugahara T, Tsuchiya T. Flexible Ceramic Film Sensors for Free-Form Devices. Sensors. 2022; 22(5):1996. https://doi.org/10.3390/s22051996
Chicago/Turabian StyleNakajima, Tomohiko, Yuki Fujio, Tohru Sugahara, and Tetsuo Tsuchiya. 2022. "Flexible Ceramic Film Sensors for Free-Form Devices" Sensors 22, no. 5: 1996. https://doi.org/10.3390/s22051996
APA StyleNakajima, T., Fujio, Y., Sugahara, T., & Tsuchiya, T. (2022). Flexible Ceramic Film Sensors for Free-Form Devices. Sensors, 22(5), 1996. https://doi.org/10.3390/s22051996