A Low-Cost, 3D-Printed Biosensor for Rapid Detection of Escherichia coli
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrochemical Characterization
2.3. Modification of Graphite Electrodes with Ferrocene
2.4. Bacterial Pathogen Sensing Using the Developing Sensor
2.5. Specificity and Cross-Reactivity Studies
3. Results and Discussion
3.1. Electrochemical Biosensor Design
3.2. Characterization of the Biosensor
3.3. Analytical Biosensing of the Sensor
3.4. Cross-Reactivity Assays
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allocati, N.; Masulli, M.; Alexeyev, M.F.; di Ilio, C. Escherichia coli in Europe: An overview. Int. J. Environ. Res. Public Health 2013, 10, 6235–6254. [Google Scholar] [CrossRef] [PubMed]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L.T. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Rushworth, J.V.; Hirst, N.A.; Millner, P.A. Biosensors for whole-cell bacterial detection. Clin. Microbiol. Rev. 2014, 27, 631–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadi, S.; Fini, H.; Ho, T.; Nadoushan, P.J.; Kraatz, H.-B.; Kerman, K. Development of an Electrochemical Sensor Using Pencil Graphite Electrode for Monitoring UV-Induced DNA Damage. J. Chem. Educ. 2020, 97, 4445–4452. [Google Scholar] [CrossRef]
- De Lima, L.F.; Ferreira, A.L.; Torres, M.D.T.; de Araujo, W.R.; de la Fuente-Nunez, C. Minute-scale detection of SARS-CoV-2 using a low-cost biosensor composed of pencil graphite electrodes. Proc. Natl. Acad. Sci. USA 2021, 118, e2106724118. [Google Scholar] [CrossRef]
- Oliveira, J.P.; Prado, A.R.; Keijok, W.J.; Antunes, P.W.P.; Yapuchura, E.R.; Guimarães, M.C.C. Impact of conjugation strategies for targeting of antibodies in gold nanoparticles for ultrasensitive detection of 17β-estradiol. Sci. Rep. 2019, 9, 13859. [Google Scholar] [CrossRef] [Green Version]
- Smalley, J.F.; Feldberg, S.W.; Chidsey, C.E.D.; Linford, M.R.; Newton, M.D.; Liu, Y.-P. The Kinetics of Electron Transfer through Ferrocene-Terminated Alkanethiol Monolayers on Gold. J. Phys. Chem. 1995, 99, 13141–13149. [Google Scholar] [CrossRef]
- Beitollahi, H.; Khalilzadeh, M.A.; Tajik, S.; Safaei, M.; Zhang, K.; Jang, H.W.; Shokouhimehr, M. Recent Advances in Applications of Voltammetric Sensors Modified with Ferrocene and Its Derivatives. ACS Omega 2020, 5, 2049–2059. [Google Scholar] [CrossRef] [Green Version]
- Mirceski, V.; Gulaboski, R.; Lovric, M.; Bogeski, I.; Kappl, R.; Hoth, M. Square-Wave Voltammetry: A Review on the Recent Progress. Electroanalysis 2013, 25, 2411–2422. [Google Scholar] [CrossRef] [Green Version]
- Sotnikov, D.V.; Zherdev, A.V.; Zvereva, E.A.; Eremin, S.A.; Dzantiev, B.B. Changing Cross-Reactivity for Different Immunoassays Using the Same Antibodies: Theoretical Description and Experimental Confirmation. Appl. Sci. 2021, 11, 6581. [Google Scholar] [CrossRef]
- Holland, J.L.; Louie, L.; Simor, A.E.; Louie, M. PCR detection of Escherichia coli O157:H7 directly from stools: Evaluation of commercial extraction methods for purifying fecal DNA. J. Clin. Microbiol. 2000, 38, 4108–4113. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Rothman, R.E. PCR-based diagnostics for infectious diseases: Uses, limitations, and future applications in acute-care settings. Lancet Infect. Dis. 2004, 4, 337–348. [Google Scholar] [CrossRef]
- Kasturi, K.N.; Drgon, T. Real-Time PCR Method for Detection of Salmonella spp. in Environmental Samples. Appl. Environ. Microbiol. 2017, 83, e00644-17. [Google Scholar] [CrossRef] [Green Version]
- Jian, C.; Luukkonen, P.; Yki-Järvinen, H.; Salonen, A.; Korpela, K. Quantitative PCR provides a simple and accessible method for quantitative microbiota profiling. PLoS ONE 2020, 15, e0227285. [Google Scholar] [CrossRef] [Green Version]
- Lagier, J.-C.; Edouard, S.; Pagnier, I.; Mediannikov, O.; Drancourt, M.; Raoult, D. Current and past strategies for bacterial culture in clinical microbiology. Clin. Microbiol. Rev. 2015, 28, 208–236. [Google Scholar] [CrossRef] [Green Version]
- Law, J.W.-F.; Mutalib, N.-S.A.; Chan, K.-G.; Lee, L.-H. Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Front. Microbiol. 2015, 5, 770. [Google Scholar] [CrossRef] [Green Version]
- Yanase, Y.; Hiragun, T.; Ishii, K.; Kawaguchi, T.; Yanase, T.; Kawai, M.; Sakamoto, K.; Hide, M. Surface plasmon resonance for cell-based clinical diagnosis. Sensors 2014, 14, 4948–4959. [Google Scholar] [CrossRef]
- Gunasekaran, D.; Gerchman, Y.; Vernick, S. Electrochemical Detection of Waterborne Bacteria Using Bi-Functional Magnetic Nanoparticle Conjugates. Biosensors 2022, 12, 36. [Google Scholar] [CrossRef]
- Razmi, N.; Hasanzadeh, M.; Willander, M.; Nur, O. Recent Progress on the Electrochemical Biosensing of Escherichia coli O157:H7: Material and Methods Overview. Biosensors 2020, 10, 54. [Google Scholar] [CrossRef]
- Malvano, F.; Pilloton, R.; Albanese, D. Sensitive Detection of Escherichia coli O157:H7 in Food Products by Impedimetric Immunosensors. Sensors 2018, 18, 2168. [Google Scholar] [CrossRef] [Green Version]
- Leva-Bueno, J.; Peyman, S.A.; Millner, P.A. A review on impedimetric immunosensors for pathogen and biomarker detection. Med. Microbiol. Immunol. 2020, 209, 343–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Assays | Advantages | Disadvantages | Detection Signal | LOD (cfu.mL−1) |
---|---|---|---|---|
PCR | No enrichment steps Multiple detections | Time: 2–5 h No discrimination between viable and non-viable cells | UV light, Fluorescence | 100–105 [11,12] |
qPCR | Real-time No post-amplification g Multiple detections Time: 1.5–2.5 h | Use of fluorescent tags | Fluorescence | 1–100 [13,14] |
Culture | Particular bacteria species | Excessively time-consuming Different selective media Time: 5–14 days | Phenotype Enzyme acitivities | 1–100 [15] |
Immunological Methods | A wide range of targets Time: 2–4 h | Cross-reactivity of antigens | Fluorescent chromogenic | 30–1000 [16] |
Optical biosensor | High selectivity and sensitivity Label free Time: 10–20 min | Fluorescent probes Complex system (SPR) Adds time and cost to the procedure. | Refractive indexes, Fluorescent, Light scattering | 15–100 [17] |
Square wave voltammetry biosensor | High selectivity and sensitivity Label free Time: 5–15 min | High probability of cross-sensitivity. | Electrical signal | 10–1000 [18,19] |
Impedimetric immunosensors | Non-destructive mechanism wide range of material, Time: 5–15 min | High probability of cross-sensitivity | Electrical signal | 3–500 [20,21] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malhotra, S.; Pham, D.S.; Lau, M.P.H.; Nguyen, A.H.; Cao, H. A Low-Cost, 3D-Printed Biosensor for Rapid Detection of Escherichia coli. Sensors 2022, 22, 2382. https://doi.org/10.3390/s22062382
Malhotra S, Pham DS, Lau MPH, Nguyen AH, Cao H. A Low-Cost, 3D-Printed Biosensor for Rapid Detection of Escherichia coli. Sensors. 2022; 22(6):2382. https://doi.org/10.3390/s22062382
Chicago/Turabian StyleMalhotra, Samir, Dang Song Pham, Michael P. H. Lau, Anh H. Nguyen, and Hung Cao. 2022. "A Low-Cost, 3D-Printed Biosensor for Rapid Detection of Escherichia coli" Sensors 22, no. 6: 2382. https://doi.org/10.3390/s22062382
APA StyleMalhotra, S., Pham, D. S., Lau, M. P. H., Nguyen, A. H., & Cao, H. (2022). A Low-Cost, 3D-Printed Biosensor for Rapid Detection of Escherichia coli. Sensors, 22(6), 2382. https://doi.org/10.3390/s22062382