Chip Design of an All-Digital Frequency Synthesizer with Reference Spur Reduction Technique for Radar Sensing
Abstract
:1. Introduction
2. Circuits Architecture
3. Circuits Design
4. Experiments and Discussions
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leung, G.C.T.; Luong, H.C. A 1-V 5.2-GHz CMOS Synthesizer for WLAN Applications. IEEE J. Solid State-Circuits 2004, 36, 1873–1882. [Google Scholar] [CrossRef]
- Jian, H.Y.; Xu, Z.; Wu, Y.C.; Chang, M.C.F. A Fractional-N PLL for Multiband (0.8–6 GHz) Communications Using Binary-Weighted D/A Differentiator and Offset-Frequency Δ-Σ Modulator. IEEE J. Solid-State Circuits 2010, 45, 768–780. [Google Scholar] [CrossRef]
- Lai, W.C.; Huang, J.F.; Fu, C.H. Frequency synthesizer with digital calibration in a GSM directs conversion application and MB-OFDM UWB communication. In Proceedings of the IEEE International Conference on Consumer Electronics–Taiwan (IEEE ICCE-TW), Taipei, Taiwan, 6–8 June 2015; pp. 398–399. [Google Scholar]
- Huang, J.-F.; Lai, W.-C.; Fu, C.-H. A 2.4-GHz Fractional-N frequency synthesizer with noise filtering technique for wireless application. In Proceedings of the 4th International Symposium on Next-Generation Electronics (ISNE), Taipei, Taiwan, 4–6 May 2015; pp. 1–4. [Google Scholar]
- Hedayati, H.; Khalil, W.; Bakkaloglu, B. A 1 MHz Bandwidth, 6 GHz 0.18 m CMOS Type-I Δ-Σ Fractional-N Synthesizer for WiMAX Applications. IEEE J. Solid State-Circuits 2009, 44, 3244–3252. [Google Scholar] [CrossRef]
- Liao, T.-W.; Su, J.-R.; Hung, C.-C. Spur-Reduction Frequency Synthesizer Exploiting Randomly Selected PFD. IEEE Trans. Very-Large Scale Integr. Syst. 2013, 21, 589–592. [Google Scholar] [CrossRef]
- Lin, T.-H.; Lai, Y.-J. An agile VCO frequency calibration technique for a 10-GHz CMOS PLL. IEEE J. Solid-State Circuits 2007, 42, 340–349. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Chen, J.; Yuan, L.; Min, H.; Tang, Z. An 18-mW 1.175–2-GHz frequency synthesizer with constant bandwidth for DVB-T. tuners. IEEE Trans. Microw. Theory Tech. 2009, 57, 928–937. [Google Scholar] [CrossRef]
- Murphy, D.; Gu, Q.J.; Wu, Y.C.; Jian, H.J.; XU, Z.; Tang, A.; Wang, F.; Chang, M.C.F. A low phase noise, wideband and compact CMOS PLL for use in a heterodyne 802.15.3c transceiver. IEEE J. Solid-State Circuits 2011, 46, 1606–1617. [Google Scholar] [CrossRef]
- Su, C.D. An All Digital PLL for Spread Spectrum Clock Generator. Master’s Thesis, National Taiwan University, Taipei, Taiwan, January 2011. [Google Scholar]
- Huang, J.-F.; Hsu, C.-M. 5.6-GHz Fractional-N Frequency Synthesizer Chip Design with Tunable Gm-C Loop Filter. Microw. Opt. Technol. Lett. 2013, 55, 2536–2541. [Google Scholar] [CrossRef]
- Huang, J.-F.; Lai, W.-C.; Wen, J.-Y.; Mao, C.-C. Chip Design of 10 GHz Low Phase Noise and Small Chip Area PLL. In Proceedings of the 8th International Conference on Communications and Networking In China, Guilin, China, 14–16 August 2013; pp. 276–280. [Google Scholar]
- Kratyuk, V.; Hanumolu, P.K.; Moon, U.K.; Mayaram, K. A design procedure for all-digital phase-locked loops based on a charge-pump phase-locked-loop analogy. IEEE Trans. Circuits Syst. II 2007, 54, 247–251. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.-F.; Hsu, C.-M.; Chen, K.-L. A low-chip area and low phase-noise hybrid phase locked loop. Microw. Opt. Technol. Lett. 2012, 54, 2295–2300. [Google Scholar] [CrossRef]
- Lai, W.-C.; Jang, S.-L.; Liu, Y.-Y.; Juang, M.-H. A Triple-Band Voltage-Controlled Oscillator Using Two Shunt Right-Handed 4th -Order Resonators. J. Semicond. Technol. Sci. 2016, 16, 1961–1964. [Google Scholar] [CrossRef] [Green Version]
- Lai, W.-C.; Jang, S.-L. An X-Band GaN HEMT Oscillator with Four-Path Inductors. Appl. Comput. Electromagn. Soc. 2020, 35, 1059–1063. [Google Scholar] [CrossRef]
- Xu, L.; Stadius, K.; Ryynanen, J. An all-digital PLL frequency synthesizer with an improved phase digitization approach and an optimized frequency calibration technique. IEEE Trans. Circuits Syst. I Regul. Pap. 2012, 59, 2481–2494. [Google Scholar] [CrossRef]
- Lee, J.Y.; Park, M.J.; Min, B.H.; Kim, S.; Park, M.Y.; Yu, H.K. A 4-GHz all digital PLL with low-power TDC and phase-error compensation. IEEE Trans. Circuits Syst. I Regul. Pap. 2012, 59, 1706–1719. [Google Scholar] [CrossRef]
- Song, M.; Jung, I.; Pamarti, S.; Kim, C. A 2.4 GHz 0.1-fref-bandwidth all-digital phase-locked loop with delay-cell-less TDC. IEEE Trans. Circuits Syst. I Regul. Pap. 2013, 60, 3145–3151. [Google Scholar] [CrossRef]
- Chen, Y.W.; Yu, Y.H.; Chen, Y.J. A 0.18-μm CMOS Dual-Band Frequency Synthesizer with Spur Reduction Calibration. IEEE Micro. Wirel. Compon. Lett. 2013, 23, 551–553. [Google Scholar] [CrossRef]
- Lai, W.C. Fractional-N Frequency Synthesizer with Low Phase Noise and Low Power Dissipation for Intelligent Vehicle-to-Vehicle Radio Control Applications. In Proceedings of the International Automatic Control. Conference (CACS), Hisinchu, Taiwan, 4–7 November 2020. [Google Scholar]
- Lai, W.C. Design Frequency Synthesizer Chip for Wearable RFID and Biomedical Applications. In Proceedings of the 7th annual IEEE International Conference on RFID Technology and Applications (IEEE RFID-TA), Shunde, China, 21–23 September 2016. [Google Scholar]
- Zheng, J.; Chen, R.; Yang, T.; Liu, X.; Liu, H.; Su, T.; Wan, L. An efficient strategy for accurate detection and localization of UAV swarms. IEEE Internet Things J. 2021, 8, 15372–15381. [Google Scholar] [CrossRef]
- Zheng, J.; Yang, T.; Liu, H.; Su, T. Efficient data transmission strategy for IIoTs with arbitrary geometrical array. IEEE Trans. Ind. Inform. 2021, 17, 3460–3468. [Google Scholar] [CrossRef]
[17] (2012) | [18] (2012) | [19] (2013) | [20] (2013) | [21] 2020 | [22] 2016 | This | |
---|---|---|---|---|---|---|---|
Technology (nm) | 65 | 90 | 130 | 180 | 180 | 180 | 180 |
Synthesizer Type | ADPLL | ADPLL | ADPLL | CPPLL | ADPLL | ADPLL | ADPLL |
Supply Voltage (V) | 1.2 | 1.0/1.2 | N/A | 1.8 | 1.8 | 1.8 | 1.8 |
Reference Frequency (MHz) | 40 | 60 | 20 | 20 | N/A | 25 | 52 |
Output Frequency (GHz) | 2.7~7.3 | 3.57~4.3 | 1.9~3.1 | 5.18~5.32 5.74~5.82 | 4.83~5.47 | 2.23–2.47 | 4.68~5.36 |
FTR (%) | 103.6 | 19.8 | 49.4 | 2.7 1.4 | N/A | 10.2 | 13.6 |
Phase Noise@1 MHz Offset (dBc/Hz) | −80 | −108.25 | −83.89 | −102 | −108.54 | −111.16 | −110.74 |
Reference Spur (dBc) | −35 | N/A | N/A | −63 | N/A | −60.4 | −52 |
Loop Bandwidth (kHz) | 800 | 700 | 2000 | 280 | N/A | 250 | 200 |
FOMpn | −82.95 | −170.34 | N/A | −161.81 | N/A | −172.3 | −172.64 |
Power Consumption (mW) | 10 | 8/9.6 | 12 * | 28.8 | 25.3 | 4.4 | 16.2 |
Chip Area (mm2) | 0.07 ** | 0.34 ** | 0.42 ** | 0.764 | 0.788 | 0.72 | 0.842 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, W.-C. Chip Design of an All-Digital Frequency Synthesizer with Reference Spur Reduction Technique for Radar Sensing. Sensors 2022, 22, 2570. https://doi.org/10.3390/s22072570
Lai W-C. Chip Design of an All-Digital Frequency Synthesizer with Reference Spur Reduction Technique for Radar Sensing. Sensors. 2022; 22(7):2570. https://doi.org/10.3390/s22072570
Chicago/Turabian StyleLai, Wen-Cheng. 2022. "Chip Design of an All-Digital Frequency Synthesizer with Reference Spur Reduction Technique for Radar Sensing" Sensors 22, no. 7: 2570. https://doi.org/10.3390/s22072570
APA StyleLai, W.-C. (2022). Chip Design of an All-Digital Frequency Synthesizer with Reference Spur Reduction Technique for Radar Sensing. Sensors, 22(7), 2570. https://doi.org/10.3390/s22072570