Mobility-Aware Offloading Decision for Multi-Access Edge Computing in 5G Networks
Abstract
:1. Introduction
2. Literature Review and Motivation of This Work
2.1. Literature Review
Ref. | Topic | Challenges |
---|---|---|
[40] | Pre-configuration |
|
[4,41] | HO prediction |
|
[42,43] | Densification |
|
[44] | Network diversity |
|
[44,45] | Self optimization |
|
Ref. | Topic | HO | TO | Limits | Contribution |
---|---|---|---|---|---|
[41] | Task offloading | Yes | Yes | The energy consumption of UEs are not considered. |
|
[4] | Joint optimisation | Yes | Yes |
|
|
[24,46] | Joint optimisation | No | Yes |
| Service caching placement and computation offloading is considered. |
[25,29] | Proactive network association | No | Yes |
|
|
[9] | Task offloading | No | Yes | Mobility model has no handover cost (i.e., dedicated as a future work) |
|
[30] | Handover management | Yes | Yes | The system model only reduces number of handovers No handover delay or cost is optimized. | Existing work focused on cloudlet placement and user-to-cloudlet association problem. |
[43] | Ultra-dense network | Yes | Yes | The parameter in optimization function leads into sub-optimum MEC and lower performance | Minimized average delay subjected to communication, computation, and handover under the limited energy budget of users. |
[31] | Ultra-dense network | No | Yes | No handover (mentioned as challenge but not considered). | Computation offloading for multi-access MEC in UDN is investigated |
[8] | Fog computing | No | Yes | Mobility model has no handover cost (mentioned as challenge but not considered) | Task offloading and migration schemes are studied in fog computing |
[33] | Fog computing | Yes | Yes | The energy consumption of UEs is not considered (i.e., dedicated as a future work) |
|
[47] | Deep reinforcement learning task scheduling | No | Yes | The tasks are completed before handover (i.e., only controls HO) No handover cost |
|
[48] | Mobility management using reinforcement learning | Yes | Yes | The energy consumption of UEs is not considered. | An online RL was proposed to optimize handover decisions by predicting user movement trajectory and periodic characteristics of the number of users. |
[49] | Edge autonomous energy management | No | No | Only energy managed | An RL-based droplet framework is used Droplets learn energy consumption statistics of the devices. |
Our work | Mobility-aware offloading decision | Yes | Yes | In the offloading process, the BSs are considered to be all ON. |
|
2.2. Motivation of This Work
- Our proposed method is beneficial for the designers in the field of mobility management in MEC, as this approach considers three important parameters—energy consumption of UEs, handover delay, and task offloading—concurrently. This jointly consideration is missing in the reported literature;
- The proposed method is intelligent enough for finding the optimal value of alpha presented in Equation (18), resulting in average time and total energy costs near to the optimum offline solution;
- In our proposed methods, the offloading decision is user-centric, which is decided on the UE-side. Moreover, Algorithm 2 initially has neither base station nor network information. In this case, the learning process is used with optimized steps to reduce overall delay and improve energy performance.
3. System Model
3.1. Computation Task Model
3.2. Network Model
3.3. Mobility Model
4. Problem Formulation
5. Online Task Offloading Decision Algorithm
5.1. Mobility-Aware UE-BS Algorithm
Algorithm 1: Mobility-aware online UE-BS algorithm |
Input: , , , , and |
1: if then |
2: |
3: end if |
4: Choose subject to (13), (15) by solving
|
5: Update according to (17). |
5.2. Mobility-Aware BS Learning Algorithm
Algorithm 2: Mobility-aware online BS learning algorithm |
Input: , , and . |
1: if then |
2: |
3: end if |
4: for do |
5: connect o each BS once. |
6: Update . |
7: Update . |
8: end for |
9: for do |
10: Connect to |
11: Observe and . |
12: . |
13: . |
14: end for |
15: for do |
16: Connect to , |
17: end for |
18: Update according to (17). |
6. Simulations Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3GPP | Third Generation Partnership Project |
5G | Fifth Generation of Mobile Networks |
6G | Sixth Generation of Mobile Networks |
BS | Base Station |
BSA | Boundless Simulation Area |
DNN | Deep Neural Network |
DRL | Deep Reinforcement Learning |
ETSI | European Telecommunications Standards Institute |
HO | Handover |
IoT | Internet of Things |
ML | Machine Learning |
MDP | Markov Decision Process |
MEC | Multi-access Edge Computing |
RAN | Radio Access Network |
RSU | Roadside Unit |
RL | Reinforcement Learning |
SDN | Software-defined Network |
TO | Task Offloading |
UDN | Ultra Dense Network |
UE | User Equipment |
VEC | Vehicular Edge Computing |
References
- Cisco. New Cisco Annual Internet Report Forecasts 5G to Support More than 10% of Global Mobile Connections by 2023. Available online: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html (accessed on 20 March 2022).
- Lieira, D.D.; Quessada, M.S.; Cristiani, A.L.; Meneguette, R.I. Algorithm for 5G Resource Management Optimization in Edge Computing. IEEE Lat. Am. Trans. 2021, 19, 1772–1780. [Google Scholar] [CrossRef]
- Thananjeyan, S.; Chan, C.A.; Wong, E.; Nirmalathas, A. Mobility-Aware Energy Optimization in Hosts Selection for Computation Offloading in Multi-Access Edge Computing. IEEE Open J. Commun. Soc. 2020, 1, 1056–1065. [Google Scholar] [CrossRef]
- Huy Hoang, V.; Ho, T.M.; Le, L.B. Mobility-Aware Computation Offloading in MEC-Based Vehicular Wireless Networks. IEEE Commun. Lett. 2020, 24, 466–469. [Google Scholar] [CrossRef]
- Tuysuz, M.F.; Aydin, M.E. QoE-Based Mobility-Aware Collaborative Video Streaming on the Edge of 5G. IEEE Trans. Ind. Inform. 2020, 16, 7115–7125. [Google Scholar] [CrossRef]
- Ergen, M.; Inan, F.; Ergen, O.; Shayea, I.; Tuysuz, M.F.; Azizan, A.; Ure, N.K.; Nekovee, M. Edge on wheels with OMNIBUS networking for 6G technology. IEEE Access 2020, 8, 215928–215942. [Google Scholar] [CrossRef]
- Nyanteh, A.O.; Li, M.; Abbod, M.F.; Al-Raweshidy, H. CloudSimHypervisor: Modeling and Simulating Network Slicing in Software-Defined Cloud Networks. IEEE Access 2021, 9, 72484–72498. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Z.; Wang, X.; Lan, Y. Mobility-Aware Task Offloading and Migration Schemes in Fog Computing Networks. IEEE Access 2019, 7, 43356–43368. [Google Scholar] [CrossRef]
- Zhan, W.; Luo, C.; Min, G.; Wang, C.; Zhu, Q.; Duan, H. Mobility-Aware Multi-User Offloading Optimization for Mobile Edge Computing. IEEE Trans. Veh. Technol. 2020, 69, 3341–3356. [Google Scholar] [CrossRef]
- Liao, Z.; Ma, Y.; Huang, J.; Wang, J.; Wang, J. HOTSPOT: A UAV-Assisted Dynamic Mobility-Aware Offloading for Mobile-Edge Computing in 3-D Space. IEEE Internet Things J. 2021, 8, 10940–10952. [Google Scholar] [CrossRef]
- Rabet, I.; Selvaraju, S.P.; Fotouhi, H.; Alves, M.; Vahabi, M.; Balador, A.; Björkman, M. SDMob: SDN-Based Mobility Management for IoT Networks. J. Sens. Actuator Netw. 2022, 11, 8. [Google Scholar] [CrossRef]
- Wei, H.; Luo, H.; Sun, Y. Mobility-Aware Service Caching in Mobile Edge Computing for Internet of Things. Sensors 2020, 20, 610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Park, J.; Kyung, Y. Mobility-Aware Hybrid Flow Rule Cache Scheme in Software-Defined Access Networks. Electronics 2022, 11, 160. [Google Scholar] [CrossRef]
- Avgeris, M.; Spatharakis, D.; Dechouniotis, D.; Leivadeas, A.; Karyotis, V.; Papavassiliou, S. ENERDGE: Distributed Energy-Aware Resource Allocation at the Edge. Sensors 2022, 22, 660. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Nikaein, N.; Stenbock, T.; Ksentini, A.; Bonnet, C. Low latency MEC framework for SDN-based LTE/LTE-A networks. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Emara, M.; Filippou, M.C.; Sabella, D. MEC-Assisted End-to-End Latency Evaluations for C-V2X Communications. In Proceedings of the 2018 European Conference on Networks and Communications (EuCNC), Porto, Portugal, 8–11 June 2018; pp. 1–9. [Google Scholar] [CrossRef] [Green Version]
- Xenakis, D.; Tsiota, A.; Koulis, C.T.; Xenakis, C.; Passas, N. Contract-Less Mobile Data Access Beyond 5G: Fully-Decentralized, High-Throughput and Anonymous Asset Trading Over the Blockchain. IEEE Access 2021, 9, 73963–74016. [Google Scholar] [CrossRef]
- Ren, D.; Gui, X.; Zhang, K.; Wu, J. Mobility-Aware Traffic Offloading via Cooperative Coded Edge Caching. IEEE Access 2020, 8, 43427–43442. [Google Scholar] [CrossRef]
- Taleb, T.; Samdanis, K.; Mada, B.; Flinck, H.; Dutta, S.; Sabella, D. On Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge Cloud Architecture and Orchestration. IEEE Commun. Surv. Tutor. 2017, 19, 1657–1681. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Ghosh, S.; Busari, S.A.; Huq, K.M.S.; Dagiuklas, T.; Mumtaz, S.; Iqbal, M.; Rodriguez, J. Robust, Resilient and Reliable Architecture for V2X Communications. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4414–4430. [Google Scholar] [CrossRef]
- Huang, C.M.; Lai, C.F. The Delay-Constrained and Network-Situation-Aware V2V2I VANET Data Offloading Based on the Multi-Access Edge Computing (MEC) Architecture. IEEE Open J. Veh. Technol. 2020, 1, 331–347. [Google Scholar] [CrossRef]
- Nkenyereye, L.; Nkenyereye, L.; Islam, S.M.R.; Kerrache, C.A.; Abdullah-Al-Wadud, M.; Alamri, A. Software Defined Network-Based Multi-Access Edge Framework for Vehicular Networks. IEEE Access 2020, 8, 4220–4234. [Google Scholar] [CrossRef]
- Wan, S.; Lu, J.; Fan, P.; Letaief, K.B. Toward Big Data Processing in IoT: Path Planning and Resource Management of UAV Base Stations in Mobile-Edge Computing System. IEEE Internet Things J. 2020, 7, 5995–6009. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Tian, H.; Qin, C.; Nie, G. Energy-Saving Offloading by Jointly Allocating Radio and Computational Resources for Mobile Edge Computing. IEEE Access 2017, 5, 11255–11268. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, J.; Huang, Y.; Fang, F.; Navaie, K.; Ding, Z. Resource Allocation for Hybrid NOMA MEC Offloading. IEEE Trans. Wirel. Commun. 2020, 19, 4964–4977. [Google Scholar] [CrossRef]
- Xue, J.; An, Y. Joint Task Offloading and Resource Allocation for Multi-Task Multi-Server NOMA-MEC Networks. IEEE Access 2021, 9, 16152–16163. [Google Scholar] [CrossRef]
- Nguyen, T.D.T.; Nguyen, V.; Pham, V.N.; Huynh, L.N.T.; Hossain, M.D.; Huh, E.N. Modeling Data Redundancy and Cost-Aware Task Allocation in MEC-Enabled Internet-of-Vehicles Applications. IEEE Internet Things J. 2021, 8, 1687–1701. [Google Scholar] [CrossRef]
- Hui, H.; Zhou, C.; An, X.; Lin, F. A New Resource Allocation Mechanism for Security of Mobile Edge Computing System. IEEE Access 2019, 7, 116886–116899. [Google Scholar] [CrossRef]
- Wang, P.; Yao, C.; Zheng, Z.; Sun, G.; Song, L. Joint Task Assignment, Transmission, and Computing Resource Allocation in Multilayer Mobile Edge Computing Systems. IEEE Internet Things J. 2019, 6, 2872–2884. [Google Scholar] [CrossRef]
- Chien, H.T.; Lin, Y.D.; Lai, C.L.; Wang, C.T. End-to-End Slicing With Optimized Communication and Computing Resource Allocation in Multi-Tenant 5G Systems. IEEE Trans. Veh. Technol. 2020, 69, 2079–2091. [Google Scholar] [CrossRef]
- Liu, C.F.; Bennis, M.; Debbah, M.; Poor, H.V. Dynamic Task Offloading and Resource Allocation for Ultra-Reliable Low-Latency Edge Computing. IEEE Trans. Commun. 2019, 67, 4132–4150. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Wang, Q.; Hu, R.Q.; Zhu, H. Mobility-Aware Offloading and Resource Allocation in a MEC-Enabled IoT Network With Energy Harvesting. IEEE Internet Things J. 2021, 8, 17541–17556. [Google Scholar] [CrossRef]
- Shayea, I.; Ergen, M.; Kouhalvandi, L.; Alhammadi, A. Dynamic Mobility Robustness Optimization Based on Individual Weight Function for 5G Networks and Beyond. In Proceedings of the 2021 24th International Symposium on Wireless Personal Multimedia Communications (WPMC), Okayama, Japan, 12–16 December 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Ouyang, T.; Zhou, Z.; Chen, X. Follow me at the edge: Mobility-aware dynamic service placement for mobile edge computing. IEEE J. Sel. Areas Commun. 2018, 36, 2333–2345. [Google Scholar] [CrossRef] [Green Version]
- Gures, E.; Shayea, I.; Alhammadi, A.; Ergen, M.; Mohamad, H. A comprehensive survey on mobility management in 5g heterogeneous networks: Architectures, challenges and solutions. IEEE Access 2020, 8, 195883–195913. [Google Scholar] [CrossRef]
- Angjo, J.; Shayea, I.; Ergen, M.; Mohamad, H.; Alhammadi, A.; Daradkeh, Y.I. Handover Management of Drones in Future Mobile Networks: 6G Technologies. IEEE Access 2021, 9, 12803–12823. [Google Scholar] [CrossRef]
- Wang, S.; Urgaonkar, R.; Zafer, M.; He, T.; Chan, K.; Leung, K.K. Dynamic Service Migration in Mobile Edge Computing Based on Markov Decision Process. IEEE/ACM Trans. Netw. 2019, 27, 1272–1288. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Urgaonkar, R.; Zafer, M.; He, T.; Chan, K.; Leung, K.K. Dynamic service migration in mobile edge-clouds. In Proceedings of the 2015 IFIP Networking Conference (IFIP Networking), Toulouse, France, 20–22 May 2015; pp. 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ceselli, A.; Premoli, M.; Secci, S. Mobile Edge Cloud Network Design Optimization. IEEE/ACM Trans. Netw. 2017, 25, 1818–1831. [Google Scholar] [CrossRef] [Green Version]
- Mobile Edge Computing (MEC) End to End Mobility Aspects ETSI GR MEC 018 V1.1.1; European Telecommunications Standards Institute: Valbonne, France, 2017.
- Zhang, X.; Zhang, J.; Liu, Z.; Cui, Q.; Tao, X.; Wang, S. MDP-Based Task Offloading for Vehicular Edge Computing Under Certain and Uncertain Transition Probabilities. IEEE Trans. Veh. Technol. 2020, 69, 3296–3309. [Google Scholar] [CrossRef]
- Park, C.; Lee, J. Mobile Edge Computing-Enabled Heterogeneous Networks. IEEE Trans. Wirel. Commun. 2020, 20, 1038–1051. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, S.; Xu, J. EMM: Energy-Aware Mobility Management for Mobile Edge Computing in Ultra Dense Networks. IEEE J. Sel. Areas Commun. 2017, 35, 2637–2646. [Google Scholar] [CrossRef] [Green Version]
- Shayea, I.; Ergen, M.; Hadri Azmi, M.; Aldirmaz Çolak, S.; Nordin, R.; Daradkeh, Y.I. Key Challenges, Drivers and Solutions for Mobility Management in 5G Networks: A Survey. IEEE Access 2020, 8, 172534–172552. [Google Scholar] [CrossRef]
- Alhammadi, A.; Roslee, M.; Alias, M.Y.; Shayea, I.; Alraih, S.; Mohamed, K.S. Auto Tuning Self-Optimization Algorithm for Mobility Management in LTE-A and 5G HetNets. IEEE Access 2020, 8, 294–304. [Google Scholar] [CrossRef]
- Liu, L.; Qin, X.; Zhang, Z.; Zhang, P. Joint Task Offloading and Resource Allocation for Obtaining Fresh Status Updates in Multi-Device MEC Systems. IEEE Access 2020, 8, 38248–38261. [Google Scholar] [CrossRef]
- Zhan, W.; Luo, C.; Wang, J.; Wang, C.; Min, G.; Duan, H.; Zhu, Q. Deep-Reinforcement-Learning-Based Offloading Scheduling for Vehicular Edge Computing. IEEE Internet Things J. 2020, 7, 5449–5465. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, R.; Liu, J. Mobility Management for Ultra-Dense Edge Computing: A Reinforcement Learning Approach. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–5. [Google Scholar]
- Balasubramanian, V.; Zaman, F.; Aloqaily, M.; Alrabaee, S.; Gorlatova, M.; Reisslein, M. Reinforcing the Edge: Autonomous Energy Management for Mobile Device Clouds. In Proceedings of the IEEE INFOCOM 2019–IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France, 29 April–2 May 2019; pp. 44–49. [Google Scholar] [CrossRef]
- Wu, Y.; Ni, K.; Zhang, C.; Qian, L.P.; Tsang, D.H.K. NOMA-Assisted Multi-Access Mobile Edge Computing: A Joint Optimization of Computation Offloading and Time Allocation. IEEE Trans. Veh. Technol. 2018, 67, 12244–12258. [Google Scholar] [CrossRef]
- El Haber, E.; Nguyen, T.M.; Assi, C. Joint Optimization of Computational Cost and Devices Energy for Task Offloading in Multi-Tier Edge-Clouds. IEEE Trans. Commun. 2019, 67, 3407–3421. [Google Scholar] [CrossRef]
- Al-Maashri, A.; Ould-Khaoua, M. Performance Analysis of MANET Routing Protocols in the Presence of Self-Similar Traffic. In Proceedings of the 2006 31st IEEE Conference on Local Computer Networks, Tampa, FL, USA, 14–16 November 2006; pp. 801–807. [Google Scholar] [CrossRef] [Green Version]
- Hung, S.; Zhang, X.; Festag, A.; Chen, K.; Fettweis, G. Vehicle-Centric Network Association in Heterogeneous Vehicle-to-Vehicle Networks. IEEE Trans. Veh. Technol. 2019, 68, 5981–5996. [Google Scholar] [CrossRef]
- Ale, L.; Zhang, N.; Wu, H.; Chen, D.; Han, T. Online Proactive Caching in Mobile Edge Computing Using Bidirectional Deep Recurrent Neural Network. IEEE Internet Things J. 2019, 6, 5520–5530. [Google Scholar] [CrossRef]
- Guan, X.; Wan, X.; Ye, F.; Choi, B. Handover Minimized Service Region Partition for Mobile Edge Computing in Wireless Metropolitan Area Networks. In Proceedings of the 2018 IEEE International Smart Cities Conference (ISC2), Kansas City, MO, USA, 16–19 September 2018; pp. 1–6. [Google Scholar]
- Wang, S.; Urgaonkar, R.; Chan, K.; He, T.; Zafer, M.; Leung, K.K. Dynamic service placement for mobile micro-clouds with predicted future costs. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 5504–5510. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Solanki, S.; Baek, S.; Lee, I. Latency Minimization for Wireless Powered Mobile Edge Computing Networks with Nonlinear Rectifiers. IEEE Trans. Veh. Technol. 2021, 70, 8320–8324. [Google Scholar] [CrossRef]
- Wang, F.; Xu, J.; Wang, X.; Cui, S. Joint Offloading and Computing Optimization in Wireless Powered Mobile-Edge Computing Systems. IEEE Trans. Wirel. Commun. 2018, 17, 1784–1797. [Google Scholar] [CrossRef]
- Goldsmith, A. Wireless communications; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Niu, C.; Li, Y.; Hu, R.Q.; Ye, F. Fast and Efficient Radio Resource Allocation in Dynamic Ultra-Dense Heterogeneous Networks. IEEE Access 2017, 5, 1911–1924. [Google Scholar] [CrossRef]
- Guo, H.; Liu, J.; Zhang, J.; Sun, W.; Kato, N. Mobile-Edge Computation Offloading for Ultradense IoT Networks. IEEE Internet Things J. 2018, 5, 4977–4988. [Google Scholar] [CrossRef]
- Lopez-Perez, D.; Guvenc, I.; Chu, X. Mobility management challenges in 3GPP heterogeneous networks. IEEE Commun. Mag. 2012, 50, 70–78. [Google Scholar] [CrossRef]
- Mehrabi, M.; Shen, S.; Hai, Y.; Latzko, V.; Koudouridis, G.P.; Gelabert, X.; Reisslein, M.; Fitzek, F.H.P. Mobility- and Energy-Aware Cooperative Edge Offloading for Dependent Computation Tasks. Network 2021, 1, 191–214. [Google Scholar] [CrossRef]
- Tian, X.; Zhu, J.; Xu, T.; Li, Y. Mobility-Included DNN Partition Offloading from Mobile Devices to Edge Clouds. Sensors 2021, 21, 229. [Google Scholar] [CrossRef] [PubMed]
Parameters | Value |
---|---|
Radius of the BS coverage area R | 150 m |
Availbe CPU frequency on BS | 25 GHz |
Channel bandwidth | 20 MHz |
Channel gain from UE to BS | dB |
Subtask size | Mbits |
Input data size of each task | Mbits |
Computation intensity of each task | cycles/bit |
Total available computation CPU for each task m by BS n | |
Computation deadline of each task | 150 ms |
Noise power | W |
UE transmission power | W |
One-time handover delay | 5 ms |
Battery capacity | 1 kJ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jahandar, S.; Kouhalvandi, L.; Shayea, I.; Ergen, M.; Azmi, M.H.; Mohamad, H. Mobility-Aware Offloading Decision for Multi-Access Edge Computing in 5G Networks. Sensors 2022, 22, 2692. https://doi.org/10.3390/s22072692
Jahandar S, Kouhalvandi L, Shayea I, Ergen M, Azmi MH, Mohamad H. Mobility-Aware Offloading Decision for Multi-Access Edge Computing in 5G Networks. Sensors. 2022; 22(7):2692. https://doi.org/10.3390/s22072692
Chicago/Turabian StyleJahandar, Saeid, Lida Kouhalvandi, Ibraheem Shayea, Mustafa Ergen, Marwan Hadri Azmi, and Hafizal Mohamad. 2022. "Mobility-Aware Offloading Decision for Multi-Access Edge Computing in 5G Networks" Sensors 22, no. 7: 2692. https://doi.org/10.3390/s22072692
APA StyleJahandar, S., Kouhalvandi, L., Shayea, I., Ergen, M., Azmi, M. H., & Mohamad, H. (2022). Mobility-Aware Offloading Decision for Multi-Access Edge Computing in 5G Networks. Sensors, 22(7), 2692. https://doi.org/10.3390/s22072692