Review on Monitoring, Operation and Maintenance of Smart Offshore Wind Farms
Abstract
:1. Introduction
2. Environmental Monitoring for Smart Offshore Wind Farms
2.1. Sea–Sky Monitoring
2.2. Sea Surface Monitoring
2.3. Sea Floor Monitoring
3. Power Equipment Monitoring for Smart Offshore Wind Farms
3.1. Monitoring for Offshore Wind Turbines
3.2. Monitoring for Power Electronic Converters
3.3. Monitoring for Submarine Cables
3.4. Monitoring for Other Equipment
4. Operation and Maintenance of Smart Offshore Wind Farms
4.1. Operation and Maintenance Platform of Smart Offshore Wind Farms
4.2. Operation and Maintenance Strategy for Smart Offshore Wind Farms
4.3. Safety and Management of Offshore Wind Farm Personnel
5. Conclusions and Prospects
- 1.
- During the construction of offshore wind farms, it is necessary to monitor the marine environment and marine organisms for a long time, and to try to avoid or reduce the impact on the habitats and migration routes of birds, fish, and other marine organisms. At the same time, the integration of offshore wind farms and marine ranches can be considered to realize the efficient output of clean energy and safe aquatic products, which will be an important industrial mode and future development direction.
- 2.
- Due to the high cost of operation and maintenance helicopters and ships, the advanced data analysis platform, model display platform, and visualization platform should be considered, which can make full use of the accumulated operation data to predict and analyze the state of the offshore wind power equipment so as to scientifically carry out the operation and maintenance of offshore wind farms, to fully realize predictive maintenance and intelligent maintenance for offshore wind power equipment, to optimize the frequency of operation and maintenance, and to reduce the operation and maintenance cost.
- 3.
- In the power equipment intelligent monitoring field, the current intelligent monitoring method relies too much on data samples. In addition, the domain knowledge-driven method can be employed, which can reduce the dependence on data samples. In particular, some expert experience and knowledge can be used for feature extraction, which can effectively reduce the dependence on data samples of different operation conditions.
- 4.
- In a long-distance sea voyage, the special operation and maintenance ship is likely to be affected by the weather and sea conditions. For example, when the operation and maintenance ship sets out, the sea state is still calm, but it has to turn back due to the sudden change in weather halfway to the operation site, which creates unnecessary operation and maintenance costs. Therefore, it is necessary to strengthen the prediction capabilities for regional climate and weather at the offshore wind farms and to provide real-time weather information for the reasonable planning, operation, and maintenance of offshore wind farms so as to reduce unnecessary operation and maintenance times and costs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.; Zhang, Y.; Huang, Q.; Lee, W. Market-oriented optimal dispatching strategy for a wind farm with a multiple stage hybrid energy storage system. CSEE J. Power Energy Syst. 2018, 4, 417–424. [Google Scholar] [CrossRef]
- Rahbar, K.; Chai, C.C.; Zhang, R. Energy Cooperation Optimization in Microgrids with Renewable Energy Integration. IEEE Trans. Smart Grid 2018, 9, 1482–1493. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Z.; Li, G.; Zhao, D.; Tian, W. Optimal Scheduling of an Isolated Microgrid with Battery Storage Considering Load and Renewable Generation Uncertainties. IEEE Trans. Ind. Electron. 2019, 66, 1565–1575. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, F.; Xu, Y.; Yeh, C.H.; Zhou, P. Evaluating and Selecting Renewable Energy Sources for a Microgrid: A Bi-Capacity-Based Multi-Criteria Decision Making Approach. IEEE Trans. Smart Grid 2021, 12, 921–931. [Google Scholar] [CrossRef]
- China Poised to Power Huge Growth in Global Offshore Wind Energy: Report. Available online: http://www.chinadaily.com.cn/a/202008/07/WS5f2ce3eaa31083481725eeb4.html (accessed on 15 February 2022).
- Paul, S.; Nath, A.P.; Rather, Z.H. A Multi-Objective Planning Framework for Coordinated Generation From Offshore Wind Farm and Battery Energy Storage System. IEEE Trans. Sustain. Energy 2020, 11, 2087–2097. [Google Scholar] [CrossRef]
- Cevasco, D.; Koukoura, S.; Kolios, A.J. Reliability, availability, maintainability data review for the identification of trends in offshore wind energy applications. Renew. Sustain. Energy Rev. 2021, 136, 110414. [Google Scholar] [CrossRef]
- Guo, H.D.; Wang, W.; Xia, M.C. On-line Multi-objective Decision Model for the Maintenance Scheduling of Offshore Wind Turbine Group. Proc. CSEE 2017, 37, 1993–2001. [Google Scholar] [CrossRef]
- Ren, Z.R.; Verma, A.S.; Li, Y.; Teuwen, J.J.; Jiang, Z. Offshore wind turbine operations and maintenance: A state-of-the-art review. Renew. Sustain. Energy Rev. 2021, 144, 110886. [Google Scholar] [CrossRef]
- Griffith, D.T.; Yoder, N.C.; Resor, B.; White, J.; Paquette, J. Structural health and prognostics management for the enhancement of offshore wind turbine operations and maintenance strategies. Wind Energy 2014, 17, 1737–1751. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Ma, C.; Kou, L. A survey on the development status and application prospects of knowledge graph in smart grids. IET Gener. Transm. Distrib. 2020, 15, 383–407. [Google Scholar] [CrossRef]
- Shin, J.; Kim, J. Optimal Design for Offshore Wind Farm considering Inner Grid Layout and Offshore Substation Location. IEEE Trans. Power Syst. 2017, 32, 2041–2048. [Google Scholar] [CrossRef]
- Tao, S.; Xu, Q.; Feijóo, A.; Zheng, G. Joint Optimization of Wind Turbine Micrositing and Cabling in an Offshore Wind Farm. IEEE Trans. Smart Grid 2021, 12, 834–844. [Google Scholar] [CrossRef]
- Du, M.; Yi, J.; Guo, J.B.; Cheng, L.; Ma, S.C.; He, Q. Review on Reliability Centered Maintenance Strategy and Applications to Offshore Wind Farm Operation and Maintenance. Power Syst. Technol. 2017, 41, 2247–2254. [Google Scholar] [CrossRef]
- Ye, J.; Gao, Y.; Su, X. Smart Energy Management Cloud Platform Design Based on Offshore Wind Farm. In Proceedings of the 2019 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), Changsha, China, 12–13 January 2019; pp. 130–133. [Google Scholar] [CrossRef]
- Liu, X. Quality of Optical Channels in Wireless SCADA for Offshore Wind Farms. IEEE Trans. Smart Grid 2012, 3, 225–232. [Google Scholar] [CrossRef]
- Wang, X.D.; Gao, X.; Liu, Y.M.; Wang, Y. Stockwell-transform and random-forest based double-terminal fault diagnosis method for offshore wind farm transmission line. IET Renew. Power Gener. 2021, 15, 2368–2382. [Google Scholar] [CrossRef]
- Liu, C.; Kou, L.; Cai, G.W.; Zhao, Z.H.; Zhang, Z. Review for AI-based Open-circuit Faults Diagnosis Methods in Power Electronics Converters. Power Syst. Technol. 2020, 44, 2957–2970. [Google Scholar] [CrossRef]
- Papatheou, E.; Dervilis, N.; Maguire, A.E.; Antoniadou, I.; Worden, K. A Performance Monitoring Approach for the Novel Lillgrund Offshore Wind Farm. IEEE Trans. Ind. Electron. 2015, 62, 6636–6644. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, C.L.; Li, G.Q.; Chen, C. Optimal scheduling of integrated demand response-enabled integrated energy systems with uncertain renewable generations: A Stackelberg game approach. Energy Convers. Manag. 2021, 235, 113996. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J. Design of Offshore Wind Turbine Foundation Monitoring System Based on Excel. In Proceedings of the 2010 Asia-Pacific Power and Energy Engineering Conference, Chengdu, China, 28–31 March 2010; pp. 1–4. [Google Scholar] [CrossRef] [Green Version]
- Helsen, J.; De Sitter, G.; Jordaens, P.J. Long-Term Monitoring of Wind Farms Using Big Data Approach. In Proceedings of the 2016 IEEE Second International Conference on Big Data Computing Service and Applications (BigDataService), Oxford, UK, 29 March–1 April 2016; pp. 265–268. [Google Scholar] [CrossRef]
- Carreno-Madinabeitia, S.; Ibarra-Berastegi, G.; Sáenz, J.; Ulazia, A. Long-term changes in offshore wind power density and wind turbine capacity factor in the Iberian Peninsula (1900–2010). Energy 2021, 226, 120364. [Google Scholar] [CrossRef]
- Parsons, G.; Firestone, J.; Yan, L.X.; Toussaint, J. The effect of offshore wind power projects on recreational beach use on the east coast of the United States: Evidence from contingent-behavior data. Energy Policy 2020, 144, 111659. [Google Scholar] [CrossRef]
- Fox, A.D.; Desholm, M.; Kahlert, J.; Christensen, T.K.; Krag Petersen, I.B. Information needs to support environmental impact assessment of the effects of European marine offshore wind farms on birds. Ibis 2006, 148, 129–144. [Google Scholar] [CrossRef]
- Zhang, F.F.; Sun, K.; Wu, X.L. A novel variable selection algorithm for multi-layer perceptron with elastic net. Neurocomputing 2019, 361, 110–118. [Google Scholar] [CrossRef]
- Klain, S.C.; Satterfield, T.; Sinner, J.; Ellis, J.I.; Chan, K.M. Bird Killer, Industrial Intruder or Clean Energy? Perceiving Risks to Ecosystem Services Due to an Offshore Wind Farm. Ecol. Econ. 2018, 143, 111–129. [Google Scholar] [CrossRef]
- Loeb, J. Bird study finds wind farm risk is exaggerated. Eng. Technol. 2018, 13, 9. [Google Scholar] [CrossRef]
- Fijn, R.C.; Krijgsveld, K.L.; Poot, M.; Dirksen, S. Bird movements at rotor heights measured continuously with vertical radar at a Dutch offshore wind farm. Ibis 2015, 157, 558–566. [Google Scholar] [CrossRef]
- Johnston, A.; Cook, A.S.C.P.; Wright, L.J.; Humphreys, E.M.; Burton, N.H. Modelling flight heights of marine birds to more accurately assess collision risk with offshore wind turbines. J. Appl. Ecol. 2014, 51, 31–41. [Google Scholar] [CrossRef]
- Drewitt, A.L.; Langston, R.H.W. Assessing the impacts of wind farms on birds. Ibis 2006, 148, 29–42. [Google Scholar] [CrossRef]
- Furness, R.W.; Wade, H.M.; Masden, E.A. Assessing vulnerability of marine bird populations to offshore wind farms. J. Environ. Manag. 2013, 119, 56–66. [Google Scholar] [CrossRef]
- Niemi, J.; Tanttu, J.T. Automatic bird identification for offshore wind farms: A case study for deep learning. In Proceedings of the 2017 International Symposium ELMAR, Zadar, Croatia, 18–20 September 2017; pp. 263–266. [Google Scholar] [CrossRef]
- Gauthreaux, S.A.; Livingston, J.W. Monitoring bird migration with a fixed-beam radar and a thermal-imaging camera. J. Field Ornithol. 2006, 77, 319–328. [Google Scholar] [CrossRef]
- Plonczkier, P.; Simms, I.C. Radar monitoring of migrating pink-footed geese: Behavioural responses to offshore wind farm development. J. Appl. Ecol. 2012, 49, 1187–1194. [Google Scholar] [CrossRef]
- Trombe, P.J.; Pinson, P.; Vincent, C.; Bøvith, T.; Cutululis, N.A.; Draxl, C.; Giebel, G.; Hahmann, A.N.; Jensen, N.E.; Jensen, B.P.; et al. Weather radars-the new eyes for offshore wind farms? Wind Energy 2014, 17, 1767–1787. [Google Scholar] [CrossRef] [Green Version]
- Trombe, P.J.; Pinson, P.; Madsen, H. Automatic Classification of Offshore Wind Regimes with Weather Radar Observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Brusch, S.; Lehner, S.; Schulz-Stellenfleth, J. Synergetic Use of Radar and Optical Satellite Images to Support Severe Storm Prediction for Offshore Wind Farming. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2008, 1, 57–66. [Google Scholar] [CrossRef]
- Zen, S.; Hart, E.; Medina-Lopez, E. The use of satellite products to assess spatial uncertainty and reduce life-time costs of offshore wind farms. Clean. Environ. Syst. 2021, 2, 100008. [Google Scholar] [CrossRef]
- Institute of Oceanographic Instrumentation, Shandong Academy of Sciences. Available online: http://www.ioisas.cn/kxyj/kycg/kycg1?page=1 (accessed on 15 February 2022).
- Nekrassov, A. On airborne measurement of the sea surface wind vector by a scatterometer (altimeter) with a nadir-looking wide-beam antenna. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2111–2116. [Google Scholar] [CrossRef]
- Russell, M.; Webster, L. Microplastics in sea surface waters around Scotland. Mar. Pollut. Bull. 2021, 166, 112210. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.M.; Murch, B.; Corcoran, A.A.; Zheng, L.; Barnes, B.B.; Weisberg, R.H.; Atwood, K.; Lenes, J.M. Developing a Smart Semantic Web with Linked Data and Models for Near-Real-Time Monitoring of Red Tides in the Eastern Gulf of Mexico. IEEE Syst. J. 2016, 10, 1282–1290. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Liu, B.Q.; Li, X.F.; Nunziata, F.; Xu, Q.; Ding, X.W.; Migliaccio, M.; Pichel, W.G. Monitoring of Oil Spill Trajectories with COSMO-SkyMed X-Band SAR Images and Model Simulation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2895–2901. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Wang, Y.; Zhu, G.Q.; Chen, X.; Li, Z.; Wang, C.; Su, C.Y. Compound Adaptive Fuzzy Quantized Control for Quadrotor and Its Experimental Verification. IEEE Trans. Cybern. 2021, 51, 1121–1133. [Google Scholar] [CrossRef]
- Bayındır, C.; Frost, J.D.; Barnes, C.F. Assessment and Enhancement of SAR Noncoherent Change Detection of Sea-Surface Oil Spills. IEEE J. Ocean. Eng. 2018, 43, 211–220. [Google Scholar] [CrossRef]
- Apostolaki-Iosifidou, E.; Mccormack, R.; Kempton, W.; Mccoy, P.; Ozkan, D. Transmission Design and Analysis for Large-Scale Offshore Wind Energy Development. IEEE Power Energy Technol. Syst. J. 2019, 6, 22–31. [Google Scholar] [CrossRef]
- La, T.V.; Khenchaf, A.; Comblet, F. Overview of surface wind speed retrieval from C-band SAR images: Empirical and electromagnetic approaches. In Proceedings of the 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Fez, Morocco, 22–24 May 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Peng, X.F.; Wang, X.J.; Gu, J.D. Discuss on the sea surface roughness of the wind energy assessment in the offshore wind farm. Acta Energiae Solaris Sin. 2012, 33, 226–229. [Google Scholar]
- Martorella, M.; Berizzi, F.; Mese, E.D. On the fractal dimension of sea surface backscattered signal at low grazing angle. IEEE Trans. Antennas Propag. 2004, 52, 1193–1204. [Google Scholar] [CrossRef]
- Hoseini, M.; Semmling, M.; Nahavandchi, H.; Rennspiess, E.; Ramatschi, M.; Haas, R.; Strandberg, J.; Wickert, J. On the Response of Polarimetric GNSS-Reflectometry to Sea Surface Roughness. IEEE Trans. Geosci. Remote Sens. 2020, 59, 7945–7956. [Google Scholar] [CrossRef]
- Ye, X.M.; Lin, M.S.; Song, Q.T. The Optimized Small Incidence Angle Setting of a Composite Bragg Scattering Model and its Application to Sea Surface Wind Speed Retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1248–1257. [Google Scholar] [CrossRef]
- Xu, Q.; Li, Y.Z.; Li, X.F.; Zhang, Z.; Cao, Y.; Cheng, Y. Impact of Ships and Ocean Fronts on Coastal Sea Surface Wind Measurements from the Advanced Scatterometer. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2162–2169. [Google Scholar] [CrossRef]
- Lin, S.F.; Sheng, J.Y. Revisiting dependence of the drag coefficient at the sea surface on wind speed and sea state. Cont. Shelf Res. 2020, 207, 104188. [Google Scholar] [CrossRef]
- Bao, Q.L.; Zhang, Y.G.; Lang, S.Y.; Lin, M.; Gong, P. Sea Surface Wind Speed Inversion Using the Low Incident NRCS Measured by TRMM Precipitation Radar. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5262–5271. [Google Scholar] [CrossRef]
- Li, M.; Zhang, L.; Wu, X.B.; Yue, X.C.; Emery, W.J.; Yi, X.Z.; Liu, J.F.; Yang, G.B. Ocean Surface Current Extraction Scheme with High-Frequency Distributed Hybrid Sky-Surface Wave Radar System. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4678–4690. [Google Scholar] [CrossRef]
- Wu, R.G.; Cao, X.; Chen, W. Surface Wind Speed-SST Relationship During the Passage of Typhoons Over the South China Sea. IEEE Geosci. Remote Sens. Lett. 2012, 9, 933–937. [Google Scholar] [CrossRef]
- Li, X.M.; Lehner, S. Sea surface wind field retrieval from TerraSAR-X and its applications to coastal areas. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 2059–2062. [Google Scholar] [CrossRef]
- Ebuchi, N. Evaluation of All-Weather SEA Surface Wind Speed Product from GCOM-W/AMSR2 Microwave Radiometer. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 6659–6662. [Google Scholar] [CrossRef]
- Bi, N.; Wang, X.J.; Jiang, T.; Zhang, Y. Analysis and evaluation of one-dimensional sea surface features based on FSV. In Proceedings of the 2017 International Applied Computational Electromagnetics Society Symposium-Italy (ACES), Florence, Italy, 26–30 March 2017; pp. 1–2. [Google Scholar] [CrossRef]
- Tauro, C.B.; Hejazin, Y.; Jacob, M.M.; Jones, W.L. An Algorithm for Sea Surface Wind Speed from SAC-D/Aquarius Microwave Radiometer. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 5485–5490. [Google Scholar] [CrossRef]
- Galas, R.; Schöne, T.; Cokrlic, M.; Semmling, M. On precise GNSS-based sea surface monitoring systems. In Proceedings of the ELMAR-2013, Zadar, Croatia, 25–27 September 2013; pp. 323–326. [Google Scholar]
- Hou, Y.D.; Wen, B.Y.; Wang, C.J.; Tian, Y.W. Numerical and Experimental Study on Backscattering Doppler Characteristics From 2-D Nonlinear Sealike Surface at Low Grazing Angle. IEEE Trans. Antennas Propag. 2020, 68, 1055–1065. [Google Scholar] [CrossRef]
- Zhou, L.Z.; Zheng, G.; Yang, J.S.; Li, X.F.; Zhang, B.; Wang, H.; Chen, P.; Wang, Y. Sea Surface Wind Speed Retrieval from Textures in Synthetic Aperture Radar Imagery. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4200911. [Google Scholar] [CrossRef]
- Ren, L.; Yang, J.S.; Jia, Y.J.; Dong, X.; Wang, J.; Zheng, G. Sea Surface Wind Speed Retrieval and Validation of the Interferometric Imaging Radar Altimeter Aboard the Chinese Tiangong-2 Space Laboratory. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4718–4724. [Google Scholar] [CrossRef]
- Salberg, A.; Rudjord, Ø.; Solberg, A.H.S. Oil Spill Detection in Hybrid-Polarimetric SAR Images. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6521–6533. [Google Scholar] [CrossRef]
- Ramsey, E.; Lu, Z.; Suzuoki, Y.; Rangoonwala, A.; Werle, D. Monitoring Duration and Extent of Storm-Surge and Flooding in Western Coastal Louisiana Marshes with Envisat ASAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 387–399. [Google Scholar] [CrossRef]
- Fors, A.S.; Brekke, C.; Gerland, S.; Doulgeris, A.P.; Beckers, J.F. Late Summer Arctic Sea Ice Surface Roughness Signatures in C-Band SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1199–1215. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, X.Y.; Sun, X.X.; Du, Z.H.; Renyi, L. Developing Process Detection of Red Tide Based on Multi-Temporal GOCI Images. In Proceedings of the 2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS), Beijing, China, 19–20 August 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Shen, X.Y.; Zhang, J.; Zhang, X.; Meng, J.; Ke, C. Sea Ice Classification Using Cryosat-2 Altimeter Data by Optimal Classifier–Feature Assembly. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1948–1952. [Google Scholar] [CrossRef]
- De Gelis, I.; Colin, A.; Longepe, N. Prediction of categorized Sea Ice Concentration from Sentinel-1 SAR images based on a Fully Convolutional Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5831–5841. [Google Scholar] [CrossRef]
- Ren, Y.B.; Li, X.F.; Yang, X.F.; Xu, H. Development of a Dual-Attention U-Net Model for Sea Ice and Open Water Classification on SAR Images. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Song, W.; Li, M.H.; Gao, W.; Huang, D.M.; Ma, Z.L.; Liotta, A.; Perra, C. Automatic Sea-Ice Classification of SAR Images Based on Spatial and Temporal Features Learning. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9887–9901. [Google Scholar] [CrossRef]
- Ren, P.; Xu, M.; Yu, Y.; Chen, F.; Jiang, X.; Yang, E. Energy Minimization with One Dot Fuzzy Initialization for Marine Oil Spill Segmentation. IEEE J. Ocean. Eng. 2019, 44, 1102–1115. [Google Scholar] [CrossRef] [Green Version]
- Singha, S.; Ressel, R.; Velotto, D.; Lehner, S. A Combination of Traditional and Polarimetric Features for Oil Spill Detection Using TerraSAR-X. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4979–4990. [Google Scholar] [CrossRef] [Green Version]
- Mdakane, L.W.; Kleynhans, W. Feature Selection and Classification of Oil Spill from Vessels Using Sentinel-1 Wide-Swath Synthetic Aperture Radar Data. IEEE Geosci. Remote Sens. Lett. 2020, 19, 1–5. [Google Scholar] [CrossRef]
- Garcia-Pineda, O.; MacDonald, I.R.; Li, X.; Jackson, C.R.; Pichel, W.G. Oil Spill Mapping and Measurement in the Gulf of Mexico With Textural Classifier Neural Network Algorithm (TCNNA). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2517–2525. [Google Scholar] [CrossRef]
- Lee, M.; Park, K.; Lee, H.; Park, J.; Kang, C.; Lee, M. Detection and Dispersion of Thick and Film-Like Oil Spills in a Coastal Bay Using Satellite Optical Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5139–5150. [Google Scholar] [CrossRef]
- Geng, J.H.; Williams, S.D.P.; Teferle, F.N.; Dodson, A.H. Detecting storm surge loading deformations around the southern North Sea using subdaily GPS. Geophys. J. Int. 2012, 191, 569–578. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.W.; Chen, X.D.; Wang, L.Z.; Min, G.Y. Effective IoT-Facilitated Storm Surge Flood Modeling Based on Deep Reinforcement Learning. IEEE Internet Things J. 2020, 7, 6338–6347. [Google Scholar] [CrossRef]
- Huang, H.L.; Gao, W.F.; Zhu, P.; Zhou, C.X.; Qiao, L.L.; Dang, C.Y.; Pang, J.H.; Yan, X.J. Molecular method for rapid detection of the red tide dinoflagellate Karenia mikimotoi in the coastal region of Xiangshan Bay, China. J. Microbiol. Methods 2019, 168, 105801. [Google Scholar] [CrossRef]
- Qin, M.J.; Li, Z.H.; Du, Z.H. Red tide time series forecasting by combining ARIMA and deep belief network. Knowl.-Based Syst. 2017, 125, 39–52. [Google Scholar] [CrossRef]
- Yang, T.; Jiang, Z.; Sun, R.; Cheng, N.; Feng, H. Maritime Search and Rescue Based on Group Mobile Computing for Unmanned Aerial Vehicles and Unmanned Surface Vehicles. IEEE Trans. Ind. Inform. 2020, 16, 7700–7708. [Google Scholar] [CrossRef]
- Wang, S.; Han, Y.; Chen, J.; Zhang, Z.; Wang, G.; Du, N. A Deep-Learning-Based Sea Search and Rescue Algorithm by UAV Remote Sensing. In Proceedings of the 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), Xiamen, China, 10–12 August 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Zailan, N.W.; Zakaria, S.N.A.B.S.; Yusoff, Z.; Marzuki, S. Determining an appropriate search grid pattern and positioning it for search and rescue operations (SAR) in forest areas. In Proceedings of the 2016 International Conference on Information and Communication Technology (ICICTM), Kuala Lumpur, Malaysia, 16–17 May 2016; pp. 10–14. [Google Scholar] [CrossRef]
- Qingsong, Z.; Junyi, D.; Yu, G.; Peng, L.; Kewei, Y. A scenario construction and similarity measurement method for navy combat search and rescue. J. Syst. Eng. Electron. 2020, 31, 957–968. [Google Scholar] [CrossRef]
- Li, Z.X. Adaptive multiple subtraction based on support vector regression. Geophysics 2020, 85, V57–V69. [Google Scholar] [CrossRef]
- Wang, Z.T.; Akamatsu, T.; Nowacek, D.P.; Yuan, J.; Zhou, L.; Lei, P.Y.; Li, J.; Duan, P.X.; Wang, K.X.; Wang, D. Soundscape of an Indo-Pacific humpback dolphin (Sousa chinensis) hotspot before windfarm construction in the Pearl River Estuary, China: Do dolphin engage in noise avoidance and passive eavesdropping behavior? Mar. Pollut. Bull. 2019, 140, 509–522. [Google Scholar] [CrossRef]
- Ma, X.N.; Li, X.; Li, J.; Ren, J.; Cheng, X. Iron-carbon could enhance nitrogen removal in Sesuvium portulacastrum constructed wetlands for treating mariculture effluents. Bioresour. Technol. 2021, 325, 124602. [Google Scholar] [CrossRef]
- Politikos, D.V.; Fakiris, E.; Davvetas, A.; Klampanos, I.A.; Papatheodorou, G. Automatic detection of seafloor marine litter using towed camera images and deep learning. Mar. Pollut. Bull. 2021, 164, 111974. [Google Scholar] [CrossRef]
- Edrén, S.M.C.; Andersen, S.M.; Teilmann, J.; Carstensen, J.; Harders, P.B.; Dietz, R.; Miller, L.A. The effect of a large Danish offshore wind farm on harbor and gray seal haul-out behavior. Mar. Mammal Sci. 2010, 26, 614–634. [Google Scholar] [CrossRef]
- Skeate, E.R.; Perrow, M.R.; Gilroy, J.J. Likely effects of construction of Scroby Sands offshore wind farm on a mixed population of harbour Phoca vitulina and grey Halichoerus grypus seals. Mar. Pollut. Bull. 2012, 64, 872–881. [Google Scholar] [CrossRef]
- Hu, Y.F.; Sun, Y.J.; Chen, L.; Zheng, Y.; Liu, H.; Xu, Y.; He, C. An Efficient AUV Based Data-Collection Protocol for Underwater Sensor Network. In Proceedings of the 2019 IEEE 19th International Conference on Communication Technology (ICCT), Xi’an, China, 16–19 October 2019; pp. 997–1001. [Google Scholar] [CrossRef]
- Li, Z.X.; Sun, N.N.; Gao, H.T.; Qin, N.; Li, Z.; Li, Z. Adaptive Subtraction Based on U-Net for Removing Seismic Multiples. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9796–9812. [Google Scholar] [CrossRef]
- Wang, J.; Li, D.; Yang, C.; Zhang, Z.; Jin, B.; Chen, Y. Key technologies of junction boxes for Chinese experimental ocean observatory networks. In Proceedings of the OCEANS 2015—MTS/IEEE Washington, Washington, DC, USA, 19–22 October 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Huang, H.C.; Ye, Y.Y.; Leng, J.X.; Yuan, Z.; Chen, Y. Study on the pressure self-adaptive water-tight junction box in underwater vehicle. International. J. Nav. Archit. Ocean Eng. 2012, 4, 302–312. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.C.; Guo, Y.; Zhao, X.; Yuan, Z.; Leng, J.; Wei, Y. A film-type pressure self-adaptive watertight junction box in deep-sea equipment. Ocean Eng. 2019, 189, 106387. [Google Scholar] [CrossRef]
- Lin, Y.H.; Huang, L.C.; Chen, S.Y.; Yu, C.M. The optimal route planning for inspection task of autonomous underwater vehicle composed of MOPSO-based dynamic routing algorithm in currents. Ocean Eng. 2018, 75, 178–192. [Google Scholar] [CrossRef]
- Xu, F.; Wang, H.S.; Liu, Z.; Chen, W. Adaptive Visual Servoing for an Underwater Soft Robot Considering Refraction Effects. IEEE Trans. Ind. Electron. 2020, 67, 10575–10586. [Google Scholar] [CrossRef]
- Debruyn, D.; Zufferey, R.; Armanini, S.F.; Winston, C.; Farinha, A.; Jin, Y.; Kovac, M. MEDUSA: A Multi-Environment Dual-Robot for Underwater Sample Acquisition. IEEE Robot. Autom. Lett. 2020, 5, 4564–4571. [Google Scholar] [CrossRef]
- Cai, W.Y.; Wu, Y.; Zhang, M.Y. Three-Dimensional Obstacle Avoidance for Autonomous Underwater Robot. IEEE Sens. Lett. 2020, 4, 7004004. [Google Scholar] [CrossRef]
- Athamna, I.; Zdrallek, M.; Wiebe, E.; Athamna, L.; Zdrallek, M.; Wiebe, E.; Koch, F. Impact of improved models on the reliability calculation of offshore wind farms. In Proceedings of the 2014 Power Systems Computation Conference, Wroclaw, Poland, 18–22 August 2014; pp. 1–7. [CrossRef]
- Wu, Y.; Su, P.; Su, Y.; Wu, Y.K.; Su, P.E.; Su, Y.S.; Wu, T.Y.; Tan, W.S. Economics- and Reliability-Based Design for an Offshore Wind Farm. IEEE Trans. Ind. Appl. 2017, 53, 5139–5149. [Google Scholar] [CrossRef]
- Badihi, H.; Zhang, Y.; Hong, H. Fault-tolerant cooperative control in an offshore wind farm using model-free and model-based fault detection and diagnosis approaches. Appl. Energy 2017, 201, 284–307. [Google Scholar] [CrossRef]
- Agarwal, D.; Kishor, N. A Fuzzy Inference-Based Fault Detection Scheme Using Adaptive Thresholds for Health Monitoring of Offshore Wind-Farms. IEEE Sens. J. 2014, 14, 3851–3861. [Google Scholar] [CrossRef]
- Liu, Y.C.; Ferrari, R.; Wu, P.; Liu, Y.C.; Ferrari, R.; Wu, P.; Jiang, X.L.; Li, S.W.; Wingerden, J.V. Fault diagnosis of the 10MW Floating Offshore Wind Turbine Benchmark: A mixed model and signal-based approach. Renew. Energy 2021, 164, 391–406. [Google Scholar] [CrossRef]
- Hang, J.; Zhang, J.Z.; Cheng, M.; Hang, J.; Zhang, J.Z.; Cheng, M.; Wang, W.; Zhang, M. An Overview of Condition Monitoring and Fault Diagnostic for Wind Energy Conversion System. Trans. China Electrotech. Soc. 2013, 28, 5139–5149. [Google Scholar] [CrossRef]
- Badihi, H.; Zhang, Y.; Hong, H. Wind Turbine Fault Diagnosis and Fault-Tolerant Torque Load Control Against Actuator Faults. IEEE Trans. Control Syst. Technol. 2015, 23, 1351–1372. [Google Scholar] [CrossRef]
- Badihi, H.; Zhang, Y.; Pillay, P.; Rakheja, S. Fault-Tolerant Individual Pitch Control for Load Mitigation in Wind Turbines With Actuator Faults. IEEE Trans. Ind. Electron. 2021, 68, 532–543. [Google Scholar] [CrossRef]
- Yang, B.; Liu, R.; Chen, X. Sparse Time-Frequency Representation for Incipient Fault Diagnosis of Wind Turbine Drive Train. IEEE Trans. Instrum. Meas. 2018, 67, 2616–2627. [Google Scholar] [CrossRef]
- Sanchez, H.; Escobet, T.; Puig, V.; Odgaard, P.F. Fault Diagnosis of an Advanced Wind Turbine Benchmark Using Interval-Based ARRs and Observers. IEEE Trans. Ind. Electron. 2015, 62, 3783–3793. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Cheng, F.; Qiao, W.; Wang, J.; Cheng, F.Z.; Qiao, W.; Qu, L.Y. Multiscale Filtering Reconstruction for Wind Turbine Gearbox Fault Diagnosis Under Varying-Speed and Noisy Conditions. IEEE Trans. Ind. Electron. 2018, 65, 4268–4278. [Google Scholar] [CrossRef]
- Zhao, H.S.; Zhang, W.; Wang, G.L. Fault diagnosis method for wind turbine rolling bearings based on Hankel tensor decomposition. IET Renew. Power Gener. 2019, 13, 220–226. [Google Scholar] [CrossRef]
- Cheng, F.Z.; Wang, J.; Qu, L.Y.; Cheng, F.Z.; Wang, J.; Qu, L.Y.; Qiao, W. Rotor-Current-Based Fault Diagnosis for DFIG Wind Turbine Drivetrain Gearboxes Using Frequency Analysis and a Deep Classifier. IEEE Trans. Ind. Appl. 2018, 54, 1062–1071. [Google Scholar] [CrossRef]
- Cheng, F.; Qu, L.; Qiao, W.; Cheng, F.Z.; Qu, L.Y.; Qiao, W.; Wei, C.; Hao, L.W. Fault Diagnosis of Wind Turbine Gearboxes Based on DFIG Stator Current Envelope Analysis. IEEE Trans. Sustain. Energy 2019, 10, 1044–1053. [Google Scholar] [CrossRef]
- Yu, X.X.; Tang, B.P.; Zhang, K. Fault Diagnosis of Wind Turbine Gearbox Using a Novel Method of Fast Deep Graph Convolutional Networks. IEEE Trans. Instrum. Meas. 2021, 70, 6502714. [Google Scholar] [CrossRef]
- Cheng, F.Z.; Qu, L.Y.; Qiao, W. Fault Prognosis and Remaining Useful Life Prediction of Wind Turbine Gearboxes Using Current Signal Analysis. IEEE Trans. Sustain. Energy 2018, 9, 157–167. [Google Scholar] [CrossRef]
- Yang, L.X.; Zhang, Z.J. Wind Turbine Gearbox Failure Detection Based on SCADA Data: A Deep Learning-Based Approach. IEEE Trans. Instrum. Meas. 2021, 70, 3507911. [Google Scholar] [CrossRef]
- Jiang, G.Q.; He, H.B.; Yan, J.; Jiang, G.Q.; He, H.B.; Yan, J.; Xie, P. Multiscale Convolutional Neural Networks for Fault Diagnosis of Wind Turbine Gearbox. IEEE Trans. Ind. Electron. 2019, 66, 3196–3207. [Google Scholar] [CrossRef]
- Jiang, G.Q.; He, H.B.; Xie, P.; Jiang, G.Q.; He, H.B.; Xie, P.; Tang, Y.F. Stacked Multilevel-Denoising Autoencoders: A New Representation Learning Approach for Wind Turbine Gearbox Fault Diagnosis. IEEE Trans. Instrum. Meas. 2017, 66, 2391–2402. [Google Scholar] [CrossRef]
- Yoon, J.; He, D.; Hecke, B.V. On the Use of a Single Piezoelectric Strain Sensor for Wind Turbine Planetary Gearbox Fault Diagnosis. IEEE Trans. Ind. Electron. 2015, 62, 6585–6593. [Google Scholar] [CrossRef]
- Du, Z.H.; Chen, X.F.; Zhang, H.; Du, Z.H.; Chen, X.F.; Zhang, H.; Yan, R.Q. Sparse Feature Identification Based on Union of Redundant Dictionary for Wind Turbine Gearbox Fault Diagnosis. IEEE Trans. Ind. Electron. 2015, 62, 6594–6605. [Google Scholar] [CrossRef]
- Pu, Z.Q.; Li, C.; Zhang, S.H.; Pu, Z.Q.; Li, C.; Zhang, S.H.; Bai, Y. Fault Diagnosis for Wind Turbine Gearboxes by Using Deep Enhanced Fusion Network. IEEE Trans. Instrum. Meas. 2021, 70, 2501811. [Google Scholar] [CrossRef]
- Lu, D.G.; Qiao, W.; Gong, X. Current-Based Gear Fault Detection for Wind Turbine Gearboxes. IEEE Trans. Sustain. Energy 2017, 8, 1453–1462. [Google Scholar] [CrossRef]
- He, Q.; Zhao, J.Y.; Jiang, G.Q.; He, Q.; Zhao, J.Y.; Jiang, G.Q.; Xie, P. An Unsupervised Multiview Sparse Filtering Approach for Current-Based Wind Turbine Gearbox Fault Diagnosis. IEEE Trans. Instrum. Meas. 2020, 69, 5569–5578. [Google Scholar] [CrossRef]
- Chen, X.; Xu, W.; Liu, Y.; Islam, M.R. Bearing Corrosion Failure Diagnosis of Doubly Fed Induction Generator in Wind Turbines Based on Stator Current Analysis. IEEE Trans. Ind. Electron. 2020, 67, 3419–3430. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, L.; Huang, C. A Fast Abnormal Data Cleaning Algorithm for Performance Evaluation of Wind Turbine. IEEE Trans. Instrum. Meas. 2021, 70, 5006512. [Google Scholar] [CrossRef]
- Chen, J.L.; Pan, J.; Li, Z.P.; Chen, J.L.; Pan, J.; Li, Z.P.; Zi, Y.Y.; Chen, X.F. Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals. Renew. Energy 2016, 89, 80–92. [Google Scholar] [CrossRef]
- Vilchis-Rodriguez, D.S.; Djurovic, S.; Smith, A.C.; Vilchis-Rodriguez, D.S.; Djurovic, S.; Smith, A.C. Wound rotor induction generator bearing fault modelling and detection using stator current analysis. IET Renew. Power Gener. 2013, 7, 330–340. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.R.; Zhang, X.; Yang, F.; Wei, S.R.; Zhang, X.; Fu, Y.; Ren, H.H.; Ren, Z.X. Early Fault Warning and Diagnosis of Offshore Wind DFIG Based on GRA-LSTM-Stacking Model. Proc. CSEE 2021, 41, 2373–2383. [Google Scholar] [CrossRef]
- Zhang, K.; Tang, B.P.; Deng, L.; Zhang, K.; Tang, B.P.; Deng, L.; Yu, X.X. Fault detection of wind turbines by subspace reconstruction based robust kernel principal component analysis. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Wang, J.; Peng, Y.Y.; Qiao, W.; Wang, J.; Peng, Y.Y.; Qiao, W.; Hudgins, J.L. Bearing Fault Diagnosis of Direct-Drive Wind Turbines Using Multiscale Filtering Spectrum. IEEE Trans. Ind. Appl. 2017, 53, 3029–3038. [Google Scholar] [CrossRef]
- Jin, X.H.; Xu, Z.W.; Qiao, W. Condition Monitoring of Wind Turbine Generators Using SCADA Data Analysis. IEEE Trans. Sustain. Energy 2021, 12, 202–210. [Google Scholar] [CrossRef]
- Watson, S.J.; Xiang, B.J.; Yang, W.; Watson, S.J.; Xiang, B.J.; Yang, W.X.; Tavner, P.J.; Carbtree, C.J. Condition Monitoring of the Power Output of Wind Turbine Generators Using Wavelets. IEEE Trans. Energy Convers. 2010, 25, 715–721. [Google Scholar] [CrossRef] [Green Version]
- Gong, X.; Qiao, W. Current-Based Mechanical Fault Detection for Direct-Drive Wind Turbines via Synchronous Sampling and Impulse Detection. IEEE Trans. Ind. Electron. 2015, 62, 1693–1702. [Google Scholar] [CrossRef]
- Wang, J.; Qiao, W.; Qu, L.Y. Wind Turbine Bearing Fault Diagnosis Based on Sparse Representation of Condition Monitoring Signals. IEEE Trans. Ind. Appl. 2019, 55, 1844–1852. [Google Scholar] [CrossRef]
- Gong, X.; Qiao, W. Bearing Fault Diagnosis for Direct-Drive Wind Turbines via Current-Demodulated Signals. IEEE Trans. Ind. Electron. 2013, 60, 3419–3428. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Peng, Y.Y.; Qiao, W. Current-Aided Order Tracking of Vibration Signals for Bearing Fault Diagnosis of Direct-Drive Wind Turbines. IEEE Trans. Ind. Electron. 2016, 63, 6336–6346. [Google Scholar] [CrossRef]
- Jin, X.H.; Qiao, W.; Peng, Y.Y.; Jin, X.H.; Qiao, W.; Peng, Y.Y.; Cheng, F.Z.; Qu, L.Y. Quantitative Evaluation of Wind Turbine Faults Under Variable Operational Conditions. IEEE Trans. Ind. Appl. 2016, 52, 2061–2069. [Google Scholar] [CrossRef]
- Wang, Y.F.; Ma, X.D.; Qian, P. Wind Turbine Fault Detection and Identification Through PCA-Based Optimal Variable Selection. IEEE Trans. Sustain. Energy 2018, 9, 1627–1635. [Google Scholar] [CrossRef] [Green Version]
- Sanz-Corretge, J.; Lúquin, O.; García-Barace, A. An efficient demodulation technique for wind turbine tower resonance monitoring. Wind Energy 2014, 17, 1179–1197. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Zhang, L. Fault Diagnosis of Industrial Wind Turbine Blade Bearing Using Acoustic Emission Analysis. IEEE Trans. Instrum. Meas. 2020, 69, 6630–6639. [Google Scholar] [CrossRef]
- Lian, J.J.; Zhao, Y.; Dong, X.F.; Lian, J.J.; Zhao, Y.; Dong, X.F.; Lian, C.; Wang, H.J. An experimental investigation on long-term performance of the wide-shallow bucket foundation model for offshore wind turbine in saturated sand. Ocean Eng. 2021, 228, 108921. [Google Scholar] [CrossRef]
- Wei, L.; Qian, Z.; Zareipour, H. Wind Turbine Pitch System Condition Monitoring and Fault Detection Based on Optimized Relevance Vector Machine Regression. IEEE Trans. Sustain. Energy 2020, 11, 2326–2336. [Google Scholar] [CrossRef]
- Kusiak, A.; Verma, A. A Data-Mining Approach to Monitoring Wind Turbines. IEEE Trans. Sustain. Energy 2012, 3, 150–157. [Google Scholar] [CrossRef]
- Li, M.Y.; Kefal, A.; Oterkus, E.; Li, M.Y.; Kefal, A.; Oterkus, E.; Oterkus, S. Structural health monitoring of an offshore wind turbine tower using iFEM methodology. Ocean Eng. 2020, 204, 107291. [Google Scholar] [CrossRef]
- Liu, Z.P.; Zhang, L. Naturally Damaged Wind Turbine Blade Bearing Fault Detection Using Novel Iterative Nonlinear Filter and Morphological Analysis. IEEE Trans. Ind. Electron. 2020, 67, 8713–8722. [Google Scholar] [CrossRef]
- Peng, Y.; Qiao, W.; Qu, L.; Peng, Y.Y.; Qiao, W.; Qu, L.Y.; Wang, J. Sensor Fault Detection and Isolation for a Wireless Sensor Network-Based Remote Wind Turbine Condition Monitoring System. IEEE Trans. Ind. Appl. 2018, 54, 1072–1079. [Google Scholar] [CrossRef]
- Wang, L.; Lin, C.; Wu, H.; Prokhorov, A.V. Stability Analysis of a Microgrid System with a Hybrid Offshore Wind and Ocean Energy Farm Fed to a Power Grid Through an HVDC Link. IEEE Trans. Ind. Appl. 2018, 54, 2012–2022. [Google Scholar] [CrossRef]
- Buchhagen, C.; Rauscher, C.; Menze, A.; Jung, J. BorWin1-First Experiences with harmonic interactions in converter dominated grids. In Proceedings of the International ETG Congress 2015; Die Energiewende-Blueprints for the New Energy Age, Bonn, Germany, 17–18 November 2015; pp. 1–7. [Google Scholar]
- Jiajun, P.; Tan, Y.; Sheng, C.; Xiao, L.; Li, J.; Chen, W. Simulation of a DC Superconducting Fault Current Limiter for the Design of Online Monitoring System. In Proceedings of the 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Athens, Greece, 10–13 September 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Kou, L.; Liu, C.; Cai, G.W.; Kou, L.; Liu, C.; Cai, G.W.; Zhou, J.N.; Yuan, Q.D.; Pang, S.M. Fault diagnosis for open-circuit faults in NPC inverter based on knowledge-driven and data-driven approaches. IET Power Electron. 2019, 13, 1236–1245. [Google Scholar] [CrossRef]
- Yang, S.; Xiang, W.; Wen, J. An Improved DC Fault Protection Scheme Independent of Boundary Components for MMC based HVDC Grids. IEEE Trans. Power Deliv. 2020, 36, 2520–2531. [Google Scholar] [CrossRef]
- Kou, L.; Liu, C.; Cai, G.W.; Kou, L.; Liu, C.; Cai, G.W.; Zhang, Z.; Zhou, J.N.; Wang, X.M. Fault diagnosis for three-phase PWM rectifier based on deep feedforward network with transient synthetic features. ISA Trans. 2020, 101, 399–407. [Google Scholar] [CrossRef]
- Kou, L.; Gong, X.D.; Zheng, Y.; Kou, L.; Gong, X.D.; Zheng, Y.; Ni, X.H.; Li, Y.; Yuan, Q.D.; Dong, Y.N. A Random Forest and Current Fault Texture Feature–Based Method for Current Sensor Fault Diagnosis in Three-Phase PWM VSR. Front. Energy Res. 2021, 9, 708456. [Google Scholar] [CrossRef]
- Wei, S.R.; He, Z.Z.; Fu, Y.; Wei, S.; Zhou, Z.H.; Yang, F.; Huang, S.; Zhang, L. Research status and prospect of offshore wind turbine fault tolerance. Power Syst. Prot. Control 2016, 44, 1236–1245. [Google Scholar] [CrossRef]
- Peng, T.; Peng, T.; Tao, H.W.; Yang, C.; Chen, Z.W.; Yang, C.H.; Gui, W.H. Karimi, H.R. A Uniform Modeling Method Based on Open-Circuit Faults Analysis for NPC-Three-Level Converter. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 457–461. [Google Scholar] [CrossRef]
- Gou, B.; Xu, Y.; Xia, Y.; Deng, Q.; Ge, X. An Online Data-Driven Method for Simultaneous Diagnosis of IGBT and Current Sensor Fault of Three-Phase PWM Inverter in Induction Motor Drives. IEEE Trans. Power Electron. 2020, 35, 13281–13294. [Google Scholar] [CrossRef]
- Ye, S.; Jiang, J.; Li, J.; Liu, Y.; Zhou, Z.; Liu, C. Fault Diagnosis and Tolerance Control of Five-Level Nested NPP Converter Using Wavelet Packet and LSTM. IEEE Trans. Power Electron. 2020, 35, 1907–1921. [Google Scholar] [CrossRef]
- Yue, L.; Saeed, M.A.; Lee, I.; Yao, X. Over-current Protection for Series-connected IGBTs based on Desaturation Detection. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020; pp. 3428–3435. [Google Scholar] [CrossRef]
- Mao, M.; He, Z.; Chang, L. Fast Detection Method of DC Short Circuit Fault of MMC-HVDC Grid. In Proceedings of the 2019 4th IEEE Workshop on the Electronic Grid (eGRID), Xiamen, China, 11–14 November 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Rodríguez-Blanco, M.A.; Cervera-Cevallos, M.; Vázquez-Ávila, J.L.; Rodriguez-Blanco, M.A.; Cervera-Cevallos, M.; Vazquez- Availa, J.L.; Lslas-Chuc, M.S. Fault Detection Methodology for the IGBT Based on Measurement of Collector Transient Current. In Proceedings of the 2018 14th International Conference on Power Electronics (CIEP), Cholula, Puebla, Mexico, 24–26 October 2018; pp. 44–48. [Google Scholar] [CrossRef]
- Bennani-Ben Abdelghani, A.; Ben Abdelghani, H.; Richardeau, F.; Abdelghani, A.B.; Abdelghani, H.B.; Richardeau, F.; Blaquiere, J.; Mosser, F.; Slama-Belkhodja, L.S. Versatile Three-Level FC-NPC Converter with High Fault-Tolerance Capabilities: Switch Fault Detection and Isolation and Safe Postfault Operation. IEEE Trans. Ind. Electron. 2017, 64, 6453–6464. [Google Scholar] [CrossRef]
- Brunson, C.; Empringham, L.; De Lillo, L.; Brunson, C.; Empringham, L.; Lillo, L.D.; Wheeler, P.; Clare, J. Open-Circuit Fault Detection and Diagnosis in Matrix Converters. IEEE Trans. Power Electron. 2015, 30, 2840–2847. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Zhao, J.; Liu, Y.; Wu, F.; Zhao, J.; Liu, Y.; Zhou, D.H.; Louisiana, H. Primary Source Inductive Energy Analysis Based Real-Time Multiple Open-Circuit Fault Diagnosis in Two-Level Three-Phase PWM Boost Rectifier. IEEE Trans. Power Electron. 2018, 33, 3411–3423. [Google Scholar] [CrossRef]
- Wang, W.C.; Kou, L.; Yuan, Q.D.; Wang, W.C.; Kou, L.; Yuan, Q.D.; Zhou, J.N.; Liu, C.; Cai, G.W. An Intelligent Fault Diagnosis Method for Open-Circuit Faults in Power-Electronics Energy Conversion System. IEEE Access 2020, 8, 221039–221050. [Google Scholar] [CrossRef]
- Xia, Y.; Xu, Y.; Gou, B. A Data-Driven Method for IGBT Open-Circuit Fault Diagnosis Based on Hybrid Ensemble Learning and Sliding-Window Classification. IEEE Trans. Ind. Inform. 2020, 16, 5223–5233. [Google Scholar] [CrossRef]
- Cai, B.P.; Zhao, Y.B.; Liu, H.L.; Cai, B.P.; Zhao, Y.B.; Liu, H.L.; Xie, M. A Data-Driven Fault Diagnosis Methodology in Three-Phase Inverters for PMSM Drive Systems. IEEE Trans. Power Electron. 2017, 32, 5590–5600. [Google Scholar] [CrossRef]
- Moosavi, S.S.; Djerdir, A.; Ait-Amirat, Y.; Moosavi, S.S.; Djerdir, A.; Ait-Amirat, Y.; Khaburi, D.A.; N’Diaye, A. Artificial Neural Network-Based Fault Diagnosis in the AC–DC Converter of the Power Supply of Series Hybrid Electric Vehicle. IET Electr. Syst. Transp. 2016, 6, 96–106. [Google Scholar] [CrossRef]
- Li, Z.; Gao, Y.; Zhang, X.; Li, Z.; Gao, Y.; Zhang, X.; Wang, B.R.; Ma, H. A Model-Data-Hybrid-Driven Diagnosis Method for Open-Switch Faults in Power Converters. IEEE Trans. Power Electron. 2021, 36, 4965–4970. [Google Scholar] [CrossRef]
- Xue, Z.Y.; Xiahou, K.S.; Li, M.S.; Ji, T.Y.; Wu, Q.H. Diagnosis of Multiple Open-Circuit Switch Faults Based on Long Short-Term Memory Network for DFIG-Based Wind Turbine Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 2600–2610. [Google Scholar] [CrossRef]
- Kiranyaz, S.; Gastli, A.; Ben-Brahim, L.; Kiranyaz, S.; Gastli, A.; Ben-Brahim, L.; Al-Emadi, N.; Gabbouj, M. Real-Time Fault Detection and Identification for MMC Using 1-D Convolutional Neural Networks. IEEE Trans. Ind. Electron. 2019, 66, 8760–8771. [Google Scholar] [CrossRef]
- Li, C.; Liu, Z.X.; Zhang, Y.; Li, G.; Liu, Z.X.; Zhang, Y.; Chai, L.; Xu, B. Diagnosis and Location of the Open-Circuit Fault in Modular Multilevel Converters: An Improved Machine Learning Method. Neurocomputing 2019, 331, 58–66. [Google Scholar] [CrossRef]
- Huang, Z.J.; Wang, Z.S.; Zhang, H.G. Multiple Open-Circuit Fault Diagnosis Based on Multistate Data Processing and Subsection Fluctuation Analysis for Photovoltaic Inverter. IEEE Trans. Instrum. Meas. 2018, 67, 516–526. [Google Scholar] [CrossRef]
- Khomfoi, S.; Tolbert, L.M. Fault Diagnosis and Reconfiguration for Multilevel Inverter Drive Using AI-Based Techniques. IEEE Trans. Ind. Electron. 2007, 54, 2954–2968. [Google Scholar] [CrossRef]
- Kamel, T.; Biletskiy, Y.; Chang, L.C. Fault Diagnosis and On-Line Monitoring for Grid-Connected Single-Phase Inverters. Electr. Power Syst. Res. 2015, 126, 68–77. [Google Scholar] [CrossRef]
- Stonier, A.A.; Lehman, B. An Intelligent-Based Fault-Tolerant System for Solar-Fed Cascaded Multilevel Inverters. IEEE Trans. Energy Convers. 2018, 33, 1047–1057. [Google Scholar] [CrossRef]
- Jiang, D.; Guo, Q.; Zhang, C. Research on modeling for submarine cable monitoring system based on timed colored Petri Nets. In Proceedings of the 2011 International Conference on Image Analysis and Signal Processing, Hubei, China, 21–23 October 2011; pp. 583–585. [Google Scholar] [CrossRef]
- Hicke, K.; Krebber, K. Towards efficient real-time submarine power cable monitoring using distributed fibre optic acoustic sensors. In Proceedings of the 2017 25th Optical Fiber Sensors Conference (OFS), Jeju, Korea, 24–28 April 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Zhu, B.; Wei, X.L.; Pang, B.; Zhu, B.; Wei, X.L.; Pang, B.; Wang, S.; Liu, T.; Li, R.H. Study on on-line insulation monitoring for 500kV submarine cable. In Proceedings of the 2014 IEEE Workshop on Advanced Research and Technology in Industry Applications (WARTIA), Ottawa, ON, USA, 29–30 September 2014; pp. 1171–1174. [Google Scholar] [CrossRef]
- He, J.; Zheng, W.Z.; Zhao, L. Application of Video Synchronous Monitoring Technology on Double Terminal Voltage in Submarine Cable Voltage withstand Test. In Proceedings of the 2020 IEEE 1st China International Youth Conference on Electrical Engineering (CIYCEE), Wuhan, China, 1–4 November 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Hao, Y.; Yao, K.; Li, H.; Jia, F.; Shi, Q.; Yue, D.; Cheng, Y. The 500kV Oil-filled Submarine Cable Temperature Monitoring System Based on BOTDA Distributed Optical Fiber Sensing Technology. In Proceedings of the 2020 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD), Xi’an, China, 15–17 October 2020; pp. 180–183. [Google Scholar] [CrossRef]
- Lux, J.; Olschewski, M.; Schäfer, P.; Hill, W. Real-Time Determination of Depth of Burial Profiles for Submarine Power Cables. IEEE Trans. Power Deliv. 2019, 34, 1079–1086. [Google Scholar] [CrossRef]
- Masoudi, A.; Pilgrim, J.A.; Newson, T.P.; Brambilla, G. Subsea Cable Condition Monitoring with Distributed Optical Fiber Vibration Sensor. J. Light. Technol. 2019, 37, 1352–1358. [Google Scholar] [CrossRef] [Green Version]
- Fouda, B.M.T.; Yang, B.; Han, D.; An, B. Pattern Recognition of Optical Fiber Vibration Signal of the Submarine Cable for Its Safety. IEEE Sens. J. 2021, 21, 6510–6519. [Google Scholar] [CrossRef]
- Xu, Z.N.; Hu, Z.W.; Zhao, L.J.; Zhang, Y.; Yang, Z.; Hu, S.; Li, Y. Application of temperature field modeling in monitoring of optic-electric composite submarine cable with insulation degradation. Measurement 2019, 133, 479–494. [Google Scholar] [CrossRef]
- Zhao, L.J.; Li, Y.Q.; Xu, Z.N.; Yang, Z.; Lv, A. On-line monitoring system of 110kV submarine cable based on BOTDR. Sens. Actuators A Phys. 2014, 216, 28–35. [Google Scholar] [CrossRef]
- Pham, H.T.; Bourgeot, J.M.; Benbouzid, M.E.H. Comparative Investigations of Sensor Fault-Tolerant Control Strategies Performance for Marine Current Turbine Applications. IEEE J. Ocean. Eng. 2018, 43, 1024–1036. [Google Scholar] [CrossRef]
- Zhou, L.; Huang, P.X.; Chi, S.K.; Li, M.; Zhou, H.; Yu, H.B.; Cao, H.G.; Chen, K. Structural health monitoring of offshore wind power structures based on genetic algorithm optimization and uncertain analytic hierarchy process. Ocean Eng. 2020, 218, 108201. [Google Scholar] [CrossRef]
- Yang, Z.R.; Zhang, F.Q.; Shen, D.C.; Wang, M.C.; Zhou, D.; Tong, W. Design of High Reliability Control Strategy for Automatic Fire Protection System of Offshore Booster Station. In Proceedings of the 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Harbin, China, 25–27 December 2020; pp. 712–716. [Google Scholar] [CrossRef]
- Carroll, J.; McDonald, A.; Dinwoodie, I.; McMillan, D.; Revie, M.; Lazakis, I. Availability, operation and maintenance costs of offshore wind turbines with different drive train configurations. Wind Energy 2016, 20, 361–378. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, R.; Yang, Z. Optimal scheduling of isolated microgrids using automated reinforcement learning-based multi-period forecasting. IEEE Trans. Sustain. Energy 2022, 13, 159–169. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, X.L. Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network. Energy 2020, 201, 117693. [Google Scholar] [CrossRef]
- Yin, X.X.; Zhao, X.W. Deep Neural Learning Based Distributed Predictive Control for Offshore Wind Farm Using High-Fidelity LES Data. IEEE Trans. Ind. Electron. 2021, 68, 3251–3261. [Google Scholar] [CrossRef]
- Wu, Y.K.; Lee, C.Y.; Chen, C.R.; Hsu, K.W.; Tseng, H.T. Optimization of the Wind Turbine Layout and Transmission System Planning for a Large-Scale Offshore Wind Farm by AI Technology. IEEE Trans. Ind. Appl. 2014, 50, 2071–2080. [Google Scholar] [CrossRef]
- Li, Y.; Li, K.; Yang, Z.; Yu, Y.; Xu, R.; Yang, M. Stochastic optimal scheduling of demand response-enabled microgrids with renewable generations: An analytical-heuristic approach. J. Clean. Prod. 2022, 330, 129840. [Google Scholar] [CrossRef]
- Japar, F.; Mathew, S.; Narayanaswamy, B.; Lim, C.M.; Hazra, J. Estimating the wake losses in large wind farms: A machine learning approach. In Proceedings of the ISGT 2014, Washington, DC, USA, 19–22 February 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Helsen, J.; Peeters, C.; Doro, P.; Ververs, E.; Jordaens, P.J. Wind Farm Operation and Maintenance Optimization Using Big Data. In Proceedings of the 2017 IEEE Third International Conference on Big Data Computing Service and Applications (BigDataService), Redwood City, CA, USA, 6–9 April 2017; pp. 179–184. [Google Scholar] [CrossRef]
- Anaya-Lara, O.; Jenkins, N.; McDonald, J.R. Communications Requirements and Technology for Wind Farm Operation and Maintenance. In Proceedings of the First International Conference on Industrial and Information Systems, Tirtayasa, Indonesia, 8–11 August 2006; pp. 173–178. [Google Scholar] [CrossRef]
- Sun, C.; Chen, Y.Y.; Cheng, C. Imputation of missing data from offshore wind farms using spatio-temporal correlation and feature correlation. Energy 2021, 229, 120777. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, X.L.; Collu, M. Wind power prediction based on high-frequency SCADA data along with isolation forest and deep learning neural networks. Int. J. Electr. Power Energy Syst. 2020, 118, 105835. [Google Scholar] [CrossRef]
- Halvorsen-Weare, E.E.; Norstad, I.; Stålhaneb, M.; Lars, M.N. A metaheuristic solution method for optimizing vessel fleet size and mix for maintenance operations at offshore wind farms under uncertainty. Energy Procedia 2017, 137, 531–538. [Google Scholar] [CrossRef]
- Domínguez-Navarro, J.A.; Dinwoodie, I.; McMillan, D. Statistical forecasting for offshore wind helicopter operations. In Proceedings of the 2014 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Durham, UK, 7–10 July 2014; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Gundegjerde, C.; Halvorsen, I.B.; Halvorsen-Weare, E.E.; Hvattum, L.M.; Nonas, L.M. A stochastic fleet size and mix model for maintenance operations at offshore wind farms. Transp. Res. Part C Emerg. Technol. 2015, 52, 74–92. [Google Scholar] [CrossRef]
- Stålhane, M.; Halvorsen-Weare, E.E.; Nonås, L.M.; Pantuso, G. Optimizing vessel fleet size and mix to support maintenance operations at offshore wind farms. Eur. J. Oper. Res. 2019, 276, 495–509. [Google Scholar] [CrossRef]
- Huang, L.L.; Fu, Y.; Mi, Y.; Cao, J.L.; Wang, P. A Markov-Chain-Based Availability Model of Offshore Wind Turbine Considering Accessibility Problems. IEEE Trans. Sustain. Energy 2017, 8, 1592–1600. [Google Scholar] [CrossRef]
- Martini, M.; Guanche, R.; Losada, I.J.; Vidal, C. Accessibility assessment for operation and maintenance of offshore wind farms in the North Sea. Wind Energy 2017, 20, 637–656. [Google Scholar] [CrossRef]
- Lazakis, I.; Khan, S. An optimization framework for daily route planning and scheduling of maintenance vessel activities in offshore wind farms. Ocean Eng. 2021, 225, 108752. [Google Scholar] [CrossRef]
- Guo, Q.; Yang, Z.R.; Liu, C.; Xu, Y.; Zhou, D.; Xie, L.Y. Anti-typhoon yaw control technology for offshore wind farms. In Proceedings of the 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Harbin, China, 25–27 December 2020; pp. 578–581. [Google Scholar] [CrossRef]
- Liu, Y.C.; Li, S.W.; Chan, P.W.; Chen, D. Empirical Correction Ratio and Scale Factor to Project the Extreme Wind Speed Profile for Offshore Wind Energy Exploitation. IEEE Trans. Sustain. Energy 2018, 9, 1030–1040. [Google Scholar] [CrossRef]
- Ma, Z.; Li, W.; Ren, N.X. The typhoon effect on the aerodynamic performance of a floating offshore wind turbine. J. Ocean Eng. Sci. 2017, 2, 279–287. [Google Scholar] [CrossRef]
- Besnard, F.; Fischer, K.; Tjernberg, L.B. A Model for the Optimization of the Maintenance Support Organization for Offshore Wind Farms. IEEE Trans. Sustain. Energy 2013, 4, 443–450. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, Z.P.; Ye, R.; Lin, Z.; Tang, Y. An Ordered Curtailment Strategy for Offshore Wind Power Under Extreme Weather Conditions Considering the Resilience of the Grid. IEEE Access 2019, 7, 54824–54833. [Google Scholar] [CrossRef]
- Huang, L.L.; Cao, J.L.; Zhang, K.H.; Fu, Y.; Xu, H.L. Status and Prospects on Operation and Maintenance of Offshore Wind Turbines. Proc. CSEE 2016, 36, 729–738. [Google Scholar] [CrossRef]
- Li, M.X.; Jiang, X.L.; Negenborn, R.R. Opportunistic maintenance for offshore wind farms with multiple-component age-based preventive dispatch. Ocean Eng. 2021, 231, 109062. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Zhang, Z.J. A two-stage model for asynchronously scheduling offshore wind farm maintenance tasks and power productions. Int. J. Electr. Power Energy Syst. 2021, 130, 107013. [Google Scholar] [CrossRef]
- Kang, J.C.; Soares, C.G. An opportunistic maintenance policy for offshore wind farms. Ocean Eng. 2020, 216, 108075. [Google Scholar] [CrossRef]
- Yeter, B.; Garbatov, Y.; Soares, C.G. Risk-based maintenance planning of offshore wind turbine farms. Reliab. Eng. Syst. Saf. 2020, 202, 107062. [Google Scholar] [CrossRef]
- Dalgic, Y.; Lazakis, I.; Dinwoodie, L.; Mcmillan, D.; Revie, M. Advanced logistics planning for offshore wind farm operation and maintenance activities. Ocean Eng. 2015, 101, 211–226. [Google Scholar] [CrossRef] [Green Version]
- Shafiee, M. An optimal group maintenance policy for multi-unit offshore wind turbines located in remote areas. In Proceedings of the 2014 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Durham, UK, 7–10 July 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Sørensen, J.D. Framework for risk-based planning of operation and maintenance for offshore wind turbines. Wind Energy 2009, 12, 493–506. [Google Scholar] [CrossRef]
- Martin, R.; Lazakis, I.; Barbouchi, S.; Johanning, L. Sensitivity analysis of offshore wind farm operation and maintenance cost and availability. Renew. Energy 2016, 85, 1226–1236. [Google Scholar] [CrossRef] [Green Version]
- Ahsan, D.; Pedersen, S. The influence of stakeholder groups in operation and maintenance services of offshore wind farms: Lesson from Denmark. Renew. Energy 2018, 125, 819–828. [Google Scholar] [CrossRef] [Green Version]
- Albrechtsen, E. Occupational Safety Management in the Offshore Windindustry-Status and Challenges. Energy Procedia 2012, 24, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Xiong, W.T.; Van Gelder, P.H.A.J.M.; Yang, K.W. A decision support method for design and operationalization of search and rescue in maritime emergency. Ocean Eng. 2020, 207, 107399. [Google Scholar] [CrossRef]
- Atkinson, P. Securing the safety of offshore wind workers. Renew. Energy Focus 2010, 11, 34–36. [Google Scholar] [CrossRef]
- Zhou, X.; Cheng, L.; Min, K.F.; Zuo, X.Y.; Yan, Z.J.; Ruan, X.G.; Chu, S.; Li, M.C. A framework for assessing the capability of maritime search and rescue in the south China sea. Int. J. Disaster Risk Reduct. 2020, 47, 101568. [Google Scholar] [CrossRef]
- Deacon, T.; Amyotte, P.R.; Khan, F.I.; MacKinnon, S. A framework for human error analysis of offshore evacuations. Saf. Sci. 2013, 51, 319–327. [Google Scholar] [CrossRef]
- Skogdalen, J.E.; Khorsandi, J.; Vinnema, J.E. Evacuation, escape, and rescue experiences from offshore accidents including the Deepwater Horizon. J. Loss Prev. Process. Ind. 2012, 25, 148–158. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Z.K.; Tian, Y.L.; Wang, B.; Yang, H.; Wu, G.H. Evaluation method for helicopter maritime search and rescue response plan with uncertainty. Chin. J. Aeronaut. 2021, 34, 493–507. [Google Scholar] [CrossRef]
- Liu, C.J.; Duan, B.; Deng, D.; Zhang, X.D. A Method of Operation and Maintenance Based on the Pressure of the Wind Power Operation and Maintenance Personnel. J. Xiangtan Univ. (Nat. Sci. Ed.) 2020, 42, 9–16. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kou, L.; Li, Y.; Zhang, F.; Gong, X.; Hu, Y.; Yuan, Q.; Ke, W. Review on Monitoring, Operation and Maintenance of Smart Offshore Wind Farms. Sensors 2022, 22, 2822. https://doi.org/10.3390/s22082822
Kou L, Li Y, Zhang F, Gong X, Hu Y, Yuan Q, Ke W. Review on Monitoring, Operation and Maintenance of Smart Offshore Wind Farms. Sensors. 2022; 22(8):2822. https://doi.org/10.3390/s22082822
Chicago/Turabian StyleKou, Lei, Yang Li, Fangfang Zhang, Xiaodong Gong, Yinghong Hu, Quande Yuan, and Wende Ke. 2022. "Review on Monitoring, Operation and Maintenance of Smart Offshore Wind Farms" Sensors 22, no. 8: 2822. https://doi.org/10.3390/s22082822
APA StyleKou, L., Li, Y., Zhang, F., Gong, X., Hu, Y., Yuan, Q., & Ke, W. (2022). Review on Monitoring, Operation and Maintenance of Smart Offshore Wind Farms. Sensors, 22(8), 2822. https://doi.org/10.3390/s22082822