MEDEP: Maintenance Event Detection for Multivariate Time Series Based on the PELT Approach
Abstract
:1. Introduction
- 1.
- The design of MEDEP as a novel framework based on PELT to detect maintenance events within sensor data represented as multivariate time series. The PELT approach is extended with a post-filtering heuristic method that consists of two consecutive steps of mean ratio and distribution threshold filtering that validate suspected maintenance events, ensuring a high accuracy rate at a very low FP rate.
- 2.
- A novel complexity-estimate-based metric [18] for time series is proposed to extract relevant knowledge concerning maintenance event interventions. The metric helps to select the most informative sensors concerning the performed maintenance actions by searching for the sensor with the largest difference of the complexity estimate before and after the performed maintenance action. This is based on the hypothesis that the sensor data before performing the maintenance action will have more and larger peaks and valleys due to the worn-out component. This metric is used for feature selection for PELT and to select the appropriate feature for the distribution threshold analysis within the post-filtering method.
2. Theoretical Background
3. Problem Definition and Data Description
3.1. Use Case 1—Microsoft Azure Predictive Maintenance Data-Set
3.2. Use Case 2-Welding Industry
4. Maintenance Event Detection Framework
4.1. Feature Extraction and Selection
4.2. Hyper-Parameter Tuning
4.3. Maintenance Event Detection
5. Experimental Results of Use Case 1
6. Experimental Results of Use Case 2
7. Discussion of Results and Outlook
7.1. Theoretical Contributions
7.2. Limitations and Future Research Direction
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gashi, M.; Thalmann, S. Taking Complexity into Account: A Structured Literature Review on Multi-component Systems in the Context of Predictive Maintenance. In Information Systems-16th European, Mediterranean, and Middle Eastern Conference, EMCIS 2019, Proceedings: EMCIS 2019; Springer: Dubai, United Arab Emirates, 2019; pp. 31–44. [Google Scholar]
- Nguyen, K.A.; Do, P.; Grall, A. Multi-level predictive maintenance for multi-component systems. Reliab. Eng. Syst. Saf. 2015, 144, 83–94. [Google Scholar] [CrossRef]
- Lee, D.; Pan, R. Predictive maintenance of complex system with multi-level reliability structure. Int. J. Prod. Res. 2017, 55, 4785–4801. [Google Scholar] [CrossRef]
- Makridakis, S. The forthcoming Artificial Intelligence (AI) revolution: Its impact on society and firms. Futures 2017, 90, 46–60. [Google Scholar] [CrossRef]
- Motaghare, O.; Pillai, A.S.; Ramachandran, K. Predictive maintenance architecture. In Proceedings of the 2018 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Madurai, India, 13–15 December 2018; pp. 1–4. [Google Scholar]
- Han, X.; Wang, Z.; Xie, M.; He, Y.; Li, Y.; Wang, W. Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence. Reliab. Eng. Syst. Saf. 2021, 210, 107560. [Google Scholar] [CrossRef]
- Moens, P.; Vanden Hautte, S.; De Paepe, D.; Steenwinckel, B.; Verstichel, S.; Vandekerckhove, S.; Ongenae, F.; Van Hoecke, S. Event-Driven Dashboarding and Feedback for Improved Event Detection in Predictive Maintenance Applications. Appl. Sci. 2021, 11, 10371. [Google Scholar] [CrossRef]
- Bose, S.K.; Kar, B.; Roy, M.; Gopalakrishnan, P.K.; Basu, A. ADEPOS: Anomaly detection based power saving for predictive maintenance using edge computing. In Proceedings of the 24th Asia and South Pacific Design Automation Conference, Tokyo, Japan, 23 January 2019; pp. 597–602. [Google Scholar]
- Gashi, M.; Ofner, P.; Ennsbrunner, H.; Thalmann, S. Dealing with missing usage data in defect prediction: A case study of a welding supplier. Comput. Ind. 2021, 132, 103505. [Google Scholar] [CrossRef]
- He, Y.; Song, K.; Meng, Q.; Yan, Y. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features. IEEE Trans. Instrum. Meas. 2019, 69, 1493–1504. [Google Scholar] [CrossRef]
- Platon, R.; Martel, J.; Woodruff, N.; Chau, T.Y. Online fault detection in PV systems. IEEE Trans. Sustain. Energy 2015, 6, 1200–1207. [Google Scholar] [CrossRef]
- De Benedetti, M.; Leonardi, F.; Messina, F.; Santoro, C.; Vasilakos, A. Anomaly detection and predictive maintenance for photovoltaic systems. Neurocomputing 2018, 310, 59–68. [Google Scholar] [CrossRef]
- Kawahara, Y.; Sugiyama, M. Sequential change-point detection based on direct density-ratio estimation. Stat. Anal. Data Min. ASA Data Sci. J. 2012, 5, 114–127. [Google Scholar] [CrossRef]
- Killick, R.; Fearnhead, P.; Eckley, I.A. Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 2012, 107, 1590–1598. [Google Scholar] [CrossRef]
- Haynes, K.; Eckley, I.A.; Fearnhead, P. Computationally efficient changepoint detection for a range of penalties. J. Comput. Graph. Stat. 2017, 26, 134–143. [Google Scholar] [CrossRef]
- Wang, D.; Yu, Y.; Rinaldo, A. Optimal change point detection and localization in sparse dynamic networks. Ann. Stat. 2021, 49, 203–232. [Google Scholar] [CrossRef]
- Al Jallad, K.; Aljnidi, M.; Desouki, M.S. Anomaly detection optimization using big data and deep learning to reduce false-positive. J. Big Data 2020, 7, 1–12. [Google Scholar] [CrossRef]
- Batista, G.E.; Keogh, E.J.; Tataw, O.M.; De Souza, V.M. CID: An efficient complexity-invariant distance for time series. Data Min. Knowl. Discov. 2014, 28, 634–669. [Google Scholar] [CrossRef]
- Gashi, M.; Mutlu, B.; Suschnigg, J.; Ofner, P.; Pichler, S.; Schreck, T. Interactive Visual Exploration of defect prediction in industrial setting through explainable models based on SHAP values. In Proceedings of the IEEE VIS 2020, Virtuell, 25–30 October 2020. [Google Scholar]
- Quatrini, E.; Costantino, F.; Di Gravio, G.; Patriarca, R. Machine learning for anomaly detection and process phase classification to improve safety and maintenance activities. J. Manuf. Syst. 2020, 56, 117–132. [Google Scholar] [CrossRef]
- Robles-Durazno, A.; Moradpoor, N.; McWhinnie, J.; Russell, G. A supervised energy monitoring-based machine learning approach for anomaly detection in a clean water supply system. In Proceedings of the 2018 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), Glasgow, UK, 11–12 June 2018; pp. 1–8. [Google Scholar]
- Rogers, T.; Worden, K.; Fuentes, R.; Dervilis, N.; Tygesen, U.; Cross, E. A Bayesian non-parametric clustering approach for semi-supervised structural health monitoring. Mech. Syst. Signal Process. 2019, 119, 100–119. [Google Scholar] [CrossRef]
- Bull, L.; Worden, K.; Manson, G.; Dervilis, N. Active learning for semi-supervised structural health monitoring. J. Sound Vib. 2018, 437, 373–388. [Google Scholar] [CrossRef]
- Pimentel, M.A.; Clifton, D.A.; Clifton, L.; Tarassenko, L. A review of novelty detection. Signal Process. 2014, 99, 215–249. [Google Scholar] [CrossRef]
- Hendrickx, K.; Meert, W.; Mollet, Y.; Gyselinck, J.; Cornelis, B.; Gryllias, K.; Davis, J. A general anomaly detection framework for fleet-based condition monitoring of machines. Mech. Syst. Signal Process. 2020, 139, 106585. [Google Scholar] [CrossRef] [Green Version]
- Purarjomandlangrudi, A.; Ghapanchi, A.H.; Esmalifalak, M. A data mining approach for fault diagnosis: An application of anomaly detection algorithm. Measurement 2014, 55, 343–352. [Google Scholar] [CrossRef]
- Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. (CSUR) 2009, 41, 1–58. [Google Scholar] [CrossRef]
- Auret, L.; Aldrich, C. Unsupervised process fault detection with random forests. Ind. Eng. Chem. Res. 2010, 49, 9184–9194. [Google Scholar] [CrossRef]
- Kamat, P.; Sugandhi, R. Anomaly detection for predictive maintenance in industry 4.0-A survey. In Proceedings of the E3S Web of Conferences, EDP Sciences. Pune City, India, 18–20 December 2019; Volume 170, p. 02007. [Google Scholar]
- Theodoropoulos, P.; Spandonidis, C.C.; Giannopoulos, F.; Fassois, S. A Deep Learning-Based Fault Detection Model for Optimization of Shipping Operations and Enhancement of Maritime Safety. Sensors 2021, 21, 5658. [Google Scholar] [CrossRef]
- Susto, G.A.; Terzi, M.; Beghi, A. Anomaly detection approaches for semiconductor manufacturing. Procedia Manuf. 2017, 11, 2018–2024. [Google Scholar] [CrossRef]
- Breunig, M.M.; Kriegel, H.P.; Ng, R.T.; Sander, J. LOF: Identifying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, TX, USA, 15–18 May 2000; pp. 93–104. [Google Scholar]
- Microsoft. Predictive Maintenance Modelling Guide Data Sets. Available online: https://gallery.azure.ai/Experiment/Predictive-Maintenance-Implementation-Guide-Data-Sets-1 (accessed on 12 August 2021).
- King, R.; Curran, K. Predictive Maintenance for Vibration-Related failures in the Semi-Conductor Industry. J. Comput. Eng. Inf. Technol. 2019, 8, 1. [Google Scholar]
- Cardoso, D.; Ferreira, L. Application of Predictive Maintenance Concepts Using Artificial Intelligence Tools. Appl. Sci. 2021, 11, 18. [Google Scholar] [CrossRef]
- Silverman, B.W. Using kernel density estimates to investigate multimodality. J. R. Stat. Soc. Ser. B (Methodol.) 1981, 43, 97–99. [Google Scholar] [CrossRef]
- Horn, R.A.; Johnson, C.R. Matrix Analysis; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Efron, B.; Tibshirani, R. An Introduction to the Bootstrap; Chapman & Hall: London, UK, 1993; 452p. [Google Scholar]
- Zonta, T.; da Costa, C.A.; da Rosa Righi, R.; de Lima, M.J.; da Trindade, E.S.; Li, G.P. Predictive maintenance in the Industry 4.0: A systematic literature review. Comput. Ind. Eng. 2020, 150, 106889. [Google Scholar] [CrossRef]
- Gashi, M.; Mutlu, B.; Lindstaedt, S.; Thalmann, S. Decision support for multi-component systems: Visualizing interdependencies for predictive maintenance. In Proceedings of the Hawaii International Conference on System Sciences 2022 (HICSS 2022), Virtuell, 4–7 January 2022. [Google Scholar]
- Ogasawara, E.; Martinez, L.C.; De Oliveira, D.; Zimbrão, G.; Pappa, G.L.; Mattoso, M. Adaptive normalization: A novel data normalization approach for non-stationary time series. In Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, 18–23 July 2010; pp. 1–8. [Google Scholar]
Datetime | MachineID | Volt | Rotate | Pressure | Vibration |
---|---|---|---|---|---|
01.01.2015 06:00 | 1 | 176.22 | 418.5 | 113.08 | 45.09 |
01.01.2015 07:00 | 1 | 162.88 | 402.75 | 95.46 | 43.41 |
01.01.2015 08:00 | 1 | 170.99 | 527.35 | 75.24 | 34.18 |
Use Case | Component | Features |
---|---|---|
1 | Comp1 | volt_24h_mean, error1 |
1 | Comp2 | rotate_24h_mean, error2, error3 |
1 | Comp3 | pressure_24h_mean, error4 |
1 | Comp4 | vibration_24h_mean, error5 |
2 | Comp1 | ErrorCount, Kurtosis, Mean, Variance, STD |
Use Case | Component | Parameter | Value | Min | Max |
---|---|---|---|---|---|
1 | Comp1 | penalty | 50 | 10 | 1000 |
mean ratio | 1.01 | 1.001 | 2 | ||
dist threshold volt_24h | 183 | - | - | ||
window_size | 12 | 6 | 48 | ||
1 | Comp2 | penalty | 100 | 10 | 1000 |
mean ratio | 2.0 | 1.001 | 2 | ||
dist threshold rotate_24h | 405 | - | - | ||
window_size | 12 | 6 | 48 | ||
1 | Comp3 | penalty | 45 | 10 | 1000 |
mean ratio | 1.1 | 1.001 | 2 | ||
dist threshold pressure_24h | 114.75 | - | - | ||
window_size | 12 | 6 | 48 | ||
1 | Comp4 | penalty | 50 | 10 | 1000 |
mean ratio | 1.001 | 1.001 | 2 | ||
dist threshold vibration_24h | 46.99 | - | - | ||
window_size | 12 | 6 | 48 | ||
2 | Comp1 | penalty | 100 | 10 | 1000 |
mean ratio | 1.5 | 1.001 | 2 | ||
dist threshold variance | 0.109 | - | - | ||
window_size | 50 | 5 | 150 |
Component | Algorithm | Sensitivity | FP Rate | Accuracy | Distribution Threshold | Mean Ratio |
---|---|---|---|---|---|---|
Comp1 | MEDEP | 0.975 | 0.948 | 0.051 | False | False |
MEDEP | 0.975 | 0.768 | 0.231 | True | False | |
MEDEP | 0.878 | 0.700 | 0.300 | False | True | |
MEDEP | 0.878 | 0.052 | 0.947 | True | True | |
LOF | 0.531 | 0.545 | 0.469 | - | - | |
Comp2 | MEDEP | 0.943 | 0.936 | 0.063 | False | False |
MEDEP | 0.943 | 0.734 | 0.265 | True | False | |
MEDEP | 0.943 | 0.572 | 0.472 | False | True | |
MEDEP | 0.943 | 0.122 | 0.877 | True | True | |
LOF | 0.467 | 0.527 | 0.473 | - | - | |
Comp3 | MEDEP | 0.900 | 0.963 | 0.037 | False | False |
MEDEP | 0.900 | 0.858 | 0.142 | True | False | |
MEDEP | 0.850 | 0.767 | 0.232 | False | True | |
MEDEP | 0.850 | 0.105 | 0.895 | True | True | |
LOF | 0.522 | 0.544 | 0.456 | - | - | |
Comp4 | MEDEP | 1.000 | 0.908 | 0.092 | False | False |
MEDEP | 1.000 | 0.593 | 0.407 | True | False | |
MEDEP | 0.945 | 0.313 | 0.687 | False | True | |
MEDEP | 0.945 | 0.054 | 0.946 | True | True | |
LOF | 0.407 | 0.461 | 0.539 | - | - |
Component | Algorithm | Sensitivity | FP | Accuracy | Distribution Threshold | Mean Ratio |
---|---|---|---|---|---|---|
Comp1 | MEDEP | 0.750 | 0.900 | 0.100 | False | False |
MEDEP | 0.750 | 0.880 | 0.012 | True | False | |
MEDEP | 0.750 | 0.750 | 0.250 | False | True | |
MEDEP | 0.750 | 0.700 | 0.300 | True | True | |
LOF | 0.500 | 0.980 | 0.010 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gashi, M.; Gursch, H.; Hinterbichler, H.; Pichler, S.; Lindstaedt, S.; Thalmann, S. MEDEP: Maintenance Event Detection for Multivariate Time Series Based on the PELT Approach. Sensors 2022, 22, 2837. https://doi.org/10.3390/s22082837
Gashi M, Gursch H, Hinterbichler H, Pichler S, Lindstaedt S, Thalmann S. MEDEP: Maintenance Event Detection for Multivariate Time Series Based on the PELT Approach. Sensors. 2022; 22(8):2837. https://doi.org/10.3390/s22082837
Chicago/Turabian StyleGashi, Milot, Heimo Gursch, Hannes Hinterbichler, Stefan Pichler, Stefanie Lindstaedt, and Stefan Thalmann. 2022. "MEDEP: Maintenance Event Detection for Multivariate Time Series Based on the PELT Approach" Sensors 22, no. 8: 2837. https://doi.org/10.3390/s22082837