Dynamic QoS Management for a Flexible 5G/6G Network Core: A Step toward a Higher Programmability
Abstract
:1. Introduction
- Optimized E2E slicing in shared networks across multiple domains;
- Efficient dynamic QoS management in the SDN environment—true dynamic queueing.
2. Background
3. Related Work
3.1. Slicing in Shared 5G/6G Networks
3.2. Dynamic QoS Management in SDN Environment
3.3. Motivation
4. Architecture Design and Methodology
4.1. Design of Multi-Slice Architecture
- No SDN controller enables standardized management of queues (other than flow assignment to queues);
- OpenFlow and OVSDB represent established standard protocols.
4.2. Dynamic QoS Methodology
4.2.1. Dynamic Queues Management
- (a)
- The slice controller retrieves the slice QoS policy for the slice it is in charge of, and if there are any changes in comparison with the previous state, it executes these changes;
- (b)
- The slice controller sends a command to modify the queue to the base station via the OVSDB protocol;
- (c)
- The slice controller creates a proactive flow to assign slice traffic to the appropriate queue on a base station;
- (d)
- The slice controller sends a command to modify the queue to the UE via the OVSDB protocol;
- (e)
- The slice controller creates a proactive flow to assign slice traffic to the appropriate queue on a UE.
4.2.2. Bandwidth Allocation Mechanism
- Link capacity is sufficient so that all slice requirements can be satisfied;
- Proportional (percentile) bandwidth allocation is less than the minimum rate required by the slice (2);
- Slice requirement could not be satisfied due to reduced link capacity and bandwidth allocation by higher-priority slices (3).
5. Testbed Design
5.1. Testbed Setup
- The 6G provider’s infrastructure consists of core and distribution layer devices and control plan management devices of its SDN network (SDN controllers and SDN base stations);
- Users (e.g., smart vehicles) access the 5G/6G infrastructure through a base station;
- Connections with third-party service providers.
5.2. Methodology Implementation
- Unique user identification (e.g., IMSI and IMEI);
- The unique slice identifier;
- The IP address of the service group provider;
- Download link capacity portion (percentage) requirement at the slice level;
- Upload link capacity portion (percentage) requirement at the slice level;
- Minimum download bandwidth requirement at the slice level;
- Minimum upload bandwidth requirement at the slice level;
- Priority index to set bandwidth allocation order.
- SliceID;
- A period after which the script program repeats (in seconds)—this represents a database polling interval.
Algorithm 1 Dynamic QoS Algorithm. |
Input: current queue query in SQL table
|
5.3. Traffic Generators
5.4. Testing Scenarios
- Scenario 1—represents a testing baseline with enough bandwidth capacity for two active service groups. An SQL database consists of only two QoS policies that slice controllers use to create instructions to manage specific SDN components;
- Scenario 2—introduces a third slice that requires the dynamic creation of queues and the redistribution of total link capacity with still enough bandwidth for all slice requirements;
- Scenario 3—introduces congestion in the testbed environment by limiting the link bandwidth that service groups share; thus, we initiate bandwidth reallocation and test the proposed methodology;
- Scenario 4—applies different QoS policies showing the dynamic nature of policy adjustment in a reduced-capacity setup;
- Scenario 5—aims to show the solution’s behavior when needed to perform dynamic release of service group resources. The resource release is necessary if the service group is no longer active, and the dynamic reconfiguration of free resources can be performed for active service groups.
- bwm-ng tool—used to monitor and log the active throughput of physical interfaces [56] on the CarClient site (for download-monitoring purposes) and the DistributionNetwork switch ( for upload-monitoring purposes);
- D-ITG tool [51]—used for logging and analyzing QoS parameters (delay, jitter, and packet loss) for UDP streaming on receiver pages on CarClient and SP3 server;
- tcpdump tool—used to collect complete traffic logs in the testing process on the DistributionNetwork switch.
6. Results and Evaluation
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Slice | Services |
---|---|
Navigation |
|
Parking |
|
Vehicle monitoring and safety |
|
Multimedia content |
|
Internet |
|
Telephone |
|
Personal medical services |
|
Ad hoc communication between vehicles (V2V communication) * |
|
References
- Chowdhury, M.Z.; Shahjalal, M.; Ahmed, S.; Jang, Y.M. 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions. IEEE Open J. Commun. Soc. 2020, 1, 957–975. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Kak, A.; Nie, S. 6G and Beyond: The Future of Wireless Communications Systems. IEEE Access 2020, 8, 133995–134030. [Google Scholar] [CrossRef]
- Rajatheva, N.; Atzeni, I.; Bjornson, E.; Bourdoux, A.; Buzzi, S.; Dore, J.B.; Erkucuk, S.; Fuentes, M.; Guan, K.; Hu, Y.; et al. White paper on broadband connectivity in 6G. arXiv 2020, arXiv:2004.14247. [Google Scholar]
- Khan, L.U.; Yaqoob, I.; Tran, N.H.; Han, Z.; Hong, C.S. Network Slicing: Recent Advances, Taxonomy, Requirements, and Open Research Challenges. IEEE Access 2020, 8, 36009–36028. [Google Scholar] [CrossRef]
- Duan, Q.; Wang, S.; Ansari, N. Convergence of Networking and Cloud/Edge Computing: Status, Challenges, and Opportunities. IEEE Netw. 2020, 34, 1–8. [Google Scholar] [CrossRef]
- Marsch, P.; Bulakci, Ö.; Queseth, O.; Boldi, M. E2E Architecture. In 5G System Design: Architectural and Functional Considerations and Long Term Research, 1st ed.; John Wiley Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 81–115. [Google Scholar]
- Javed, F.; Antevski, K.; Mangues, J.; Giupponi, L.; Bernardos, C.J. Distributed Ledger Technologies For Network Slicing: A Survey. IEEE Access 2022, 10, 19412–19442. [Google Scholar] [CrossRef]
- Lebedenko, T.; Yeremenko, O.; Harkusha, S.; Ali, A.S. Dynamic model of queue management based on resource allocation in telecommunication networks. In Proceedings of the TCSET, Lviv-Slavske, Ukraine, 20–24 February 2018; pp. 1035–1038. [Google Scholar]
- OpenFlow Configuration and Management Protocol OF-CONFIG 1.0, ONF TS-004. 2011. Available online: https://opennetworking.org/wp-content/uploads/2013/02/of-config1dot0-final.pdf (accessed on 5 February 2022).
- The Open vSwitch Database Management Protocol, RFC 7047. 2013. Available online: https://datatracker.ietf.org/doc/html/rfc7047.txt (accessed on 5 February 2022).
- Li, Y.; Huang, J.; Sun, Q.; Sun, T.; Wang, S. Cognitive Service Architecture for 6G Core Network. IEEE Trans. Ind. Inform. 2021, 17, 7193–7203. [Google Scholar] [CrossRef]
- Kaloxylos, A. A Survey and an Analysis of Network Slicing in 5G Networks. IEEE Commun. Stand. Mag. 2018, 2, 60–65. [Google Scholar] [CrossRef]
- Agyapong, P.; Iwamura, M.; Staehle, D.; Kiess, W.; Benjebbour, A. Design considerations for a 5G network architecture. IEEE Commun. Mag. 2014, 52, 65–75. [Google Scholar] [CrossRef]
- Bosshart, P.; Gibb, G.; Kim, H.S.; Varghese, G.; McKeown, N.; Izzard, M.; Mujica, F.; Horowitz, M. Forwarding metamorphosis: Fast programmable match-action processing in hardware for SDN. ACM Sigcomm Comput. Commun. Rev. 2013, 43, 99–110. [Google Scholar] [CrossRef]
- Banchs, A.; Fiore, M.; Garcia-Saavedra, A.; Gramaglia, M. Network intelligence in 6G: Challenges and opportunities. In Proceedings of the 16th ACM Workshop on Mobility in the Evolving Internet Architecture, New Orleans, LA, USA, 25 October 2021; pp. 7–12. [Google Scholar]
- Taleb, T.; Afolabi, I.; Samdanis, K.; Yousaf, F.Z. On multi-domain network slicing orchestration architecture and federated resource control. IEEE Netw. 2019, 33, 242–252. [Google Scholar] [CrossRef] [Green Version]
- Guan, W.; Zhang, H.; Leung, V.C.M. Customized Slicing for 6G: Enforcing Artificial Intelligence on Resource Management. IEEE Netw. Early Access 2021, 35, 264–271. [Google Scholar] [CrossRef]
- Vincenzi, M.; Antonopoulos, A.; Kartsakli, E.; Vardakas, J.; Alonso, L.; Verikou, C. Multi-tenant slicing for spectrum management on the road to 5G. IEEE Wirel. Commun. 2017, 24, 118–125. [Google Scholar] [CrossRef] [Green Version]
- Abiko, Y.; Saito, T.; Ikeda, D.; Ohta, K.; Mizuno, T.; Mineno, H. Flexible resource block allocation to multiple slices for radio access network slicing using deep reinforcement learning. IEEE Access 2020, 8, 68183–68198. [Google Scholar] [CrossRef]
- El Amri, A.; Meddeb, A. Optimal server selection for competitive service providers in network virtualization context. Telecommun. Syst. 2021, 77, 451–467. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, Y.; Ma, Z.; Xiao, M.; Ding, Z.; Lei, X.; Karagiannidis, G.K.; Fan, P. 6G Wireless Networks: Vision, Requirements, Architecture, and Key Technologies. IEEE Veh. Technol. Mag. 2019, 14, 28–41. [Google Scholar] [CrossRef]
- Antonopoulos, A. Bankruptcy problem in network sharing: Fundamentals, applications and challenges. IEEE Wirel. Commun. 2020, 27, 81–87. [Google Scholar] [CrossRef]
- Ramrao, J.V.; Jain, A. Dynamic 5G Network Slicing. Int. J. Adv. Trends Comput. Sci. Eng. 2021, 10, 1006–1010. [Google Scholar] [CrossRef]
- Abbas, K.; Afaq, M.; Ahmed Khan, T.; Rafiq, A.; Song, W.-C. Slicing the Core Network and Radio Access Network Domains through Intent-Based Networking for 5G Networks. Electronics 2020, 9, 1710. [Google Scholar] [CrossRef]
- Kukli´nski, S.; Tomaszewski, L.; Kołakowski, R.; Chemouil, P. 6G-LEGO: A Framework for 6G Network Slices. J. Commun. Netw. 2021, 23, 442–453. [Google Scholar] [CrossRef]
- Chergui, H.; Blanco, L.; Garrido, L.A.; Ramantas, K.; Kukliński, S.; Ksentini, A.; Verikoukis, C. Zero-Touch AI-Driven Distributed Management for Energy-Efficient 6G Massive Network Slicing. IEEE Netw. 2021, 35, 43–49. [Google Scholar] [CrossRef]
- Foukas, X.; Patounas, G.; Elmokashfi, A.; Marina, M.K. Network Slicing in 5G: Survey and challenges. IEEE Commun. Mag. 2017, 55, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Biczok, G.; Dramitinos, M.; Toka, L.; Heegaard, P.E.; Lonsethagen, H. Manufactured by Software: SDN-Enabled Multi-Operator Composite Services with the 5G Exchange. IEEE Commun. Mag. 2017, 55, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Afolabi, I.; Taleb, T.; Samdanis, K.; Ksentini, A.; Flinck, H. Network slicing and softwarization: A survey on principles, enabling technologies, and solutions. IEEE Commun. Surv. Tutor. 2018, 20, 2429–2453. [Google Scholar] [CrossRef]
- You, X.; Wang, C.-X.; Huang, J.; Gao, X.; Zhang, Z.; Wang, M.; Huang, Y.; Zhang, C.; Jiang, Y.; Wang, J.; et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts. Sci. China Inf. Sci. 2020, 64, 110301. [Google Scholar] [CrossRef]
- Ziegler, V.; Yrjola, S. 6G Indicators of Value and Performance. In Proceedings of the 2nd 6G Wireless Summit, Levi, Finland, 17–20 March 2020; pp. 1–5. [Google Scholar]
- Palma, D.; Gonçalves, J.; Sousa, B.; Cordeiro, L.; Simoes, P.; Sharma, S.; Staessens, D. The QueuePusher: Enabling Queue Management in OpenFlow. In Proceedings of the Third European Workshop on Software Defined Networks, Budapest, Hungary, 1–3 September 2014; pp. 125–126. [Google Scholar]
- Kim, W.; Sharma, P.; Lee, J.; Banerjee, S.; Tourrilhes, J.; Lee, S.J.; Yalagandula, P. Automated and Scalable QoS Control for Network Convergence. In Proceedings of the INM/WREN’10, San Jose, CA, USA, 27 April 2010; pp. 1–6. [Google Scholar]
- Durner, R.; Blenk, A.; Kellerer, W. Performance study of dynamic QoS management for OpenFlow-enabled SDN switches. In Proceedings of the IWQoS, Portland, OR, USA, 15–16 June 2015; pp. 177–182. [Google Scholar]
- Kuzniar, M.; Peresini, P.; Kostic, D. What You Need to Know about SDN Control and Data Planes; EPFL: Lausanne, Switzerland, 2014. [Google Scholar]
- Bozakov, Z.; Rizk, A. Taming SDN controllers in heterogeneous hardware environments. In Proceedings of the EWSDN, Berlin, Germany, 10–11 October 2013; pp. 50–55. [Google Scholar]
- Kuzniar, M.; Peresini, P.; Kostic, D. What you need to know about sdn flow tables. In Proceedings of the PAM, New York, NY, USA, 19–20 March 2015; pp. 347–359. [Google Scholar]
- Mohan, P.M.; Divakaran, D.M.; Gurusamy, M. Performance study of TCP flows with QoS-supported OpenFlow in data center networks. In Proceedings of the ICON, Singapore, 11–13 December 2013; pp. 1–6. [Google Scholar]
- Nguyen-Ngoc, A.; Lange, S.; Gebert, S.; Zinner, T.; Tran-Gia, P.; Jarschel, M. Investigating isolation between virtual networks in case of congestion for a Pronto 3290 switch. In Proceedings of the SDNFlex 2015, Cottbus, Germany, 9–13 March 2015; pp. 1–5. [Google Scholar]
- Jeong, S.; Lee, D.; Hyun, J.; Li, J.; Hong, J.-W.K. Application-aware traffic engineering in software-defined network. In Proceedings of the APNOMS, Seoul, Korea, 27–29 September 2017; pp. 315–318. [Google Scholar]
- Agarwal, S.; Kodialam, M.i.; Lakshman, T.V. Traffic engineering in software defined networks. In Proceedings of the INFOCOM, Turin, Italy, 14–19 April 2013; pp. 2211–2219. [Google Scholar]
- Huan, N.F.; Liao, I.-J.; Liu, H.-W.; Wu, S.-J.; Chou, C.-S. A dynamic QoS management system with flow classification platform for software-defined networks. In Proceedings of the UMEDIA, Colombo, Sri Lanka, 24–26 August 2015; pp. 72–77. [Google Scholar]
- Baklizi, M. Weight Queue Dynamic Active Queue Management Algorithm. Symmetry 2020, 12, 2077. [Google Scholar] [CrossRef]
- Khan, S.; Hussain, F.K.; Hussain, O.K. Guaranteeing end-to-end QoS provisioning in SOA based SDN architecture: A survey and Open Issues. Future Gener. Comput. Syst. 2021, 119, 176–187. [Google Scholar] [CrossRef]
- Pedreno-Manresa, J.J.; Khodashenas, P.S.; Siddiqui, M.S.; Pavon-Marino, P. Dynamic QoS/QoE Assurance in Realistic NFV-Enabled 5G Access Networks. In Proceedings of the ICTON, Girona, Spain, 2–6 July 2017; pp. 1–4. [Google Scholar]
- Sonkoly, B.; Gulyás, A.; Németh, F.; Czentye, J.; Kurucz, K.; Novák, B.; Vaszkun, G. On QoS Support to Ofelia OpenFlow. In Proceedings of the European Workshop on Software Defined Networking, Darmstadt, Germany, 25–26 October 2012; pp. 109–113. [Google Scholar]
- Bari, M.F.; Chowdhury, S.R.; Ahmed, R.; Boutaba, R. PolicyCop: An Autonomic QoS Policy Enforcement Framework for Software Defined Networks. In Proceedings of the SDN4FNS, Trento, Italy, 11–13 November 2013; pp. 1–7. [Google Scholar]
- Bueno, I.; Aznar, J.I.; Escalona, E.; Ferrer, J.; Garcia-Espin, J.A. An OpenNaaS based SDN framework for dynamic QoS control. In Proceedings of the SDN4FNS, Trento, Italy, 11–13 November 2013; pp. 1–7. [Google Scholar]
- Panev, S.; Latkoski, P. Modeling of OpenFlow-related handover messages in mobile networks. Telecommun. Syst. 2020, 75, 307–318. [Google Scholar] [CrossRef]
- Llorens-Carrodeguas, A.; Leyva-Pupo, I.; Cervelló-Pastor, C.; Piñeiro, L.; Siddiqui, S. An SDN-based Solution for Horizontal Auto-Scaling and Load Balancing of Transparent VNF Clusters. Sensors 2021, 21, 8283. [Google Scholar] [CrossRef]
- Rost, P.; Mannweiler, C.; Michalopoulos, D.S.; Sartori, C.; Sciancalepore, V.; Sastry, N.; Bakker, H. Network Slicing to Enable Scalability and Flexibility in 5G Mobile Networks. IEEE Commun. Mag. 2017, 55, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Balan, D.G.; Potorac, D.A. Linux HTB queuing discipline implementations. In Proceedings of the First International Conference on Networked Digital Technologies, Ostrava, Czech Republic, 29–31 July 2009; pp. 122–126. [Google Scholar]
- EVE—The Emulated Virtual Environment [Internet]. Available online: https://www.eve-ng.net/ (accessed on 5 February 2022).
- DynQoS [Internet]. GitHub: Petar Bojovic. Available online: https://github.com/Paxy/DynQoS (accessed on 5 February 2022).
- Avallone, S.; Guadagno, S.; Emma, D.; Pescape, A.; Ventre, G. D-ITG distributed internet traffic generator. In Proceedings of the QEST 2004, Enschede, The Netherlands, 27–30 September 2004; pp. 316–317. [Google Scholar]
- Bandwidth Monitor NG [Internet]. GitHub: Volker Gropp. Available online: https://github.com/vgropp/bwm-ng (accessed on 5 February 2022).
Slice Name | Service Group | Download Throughput | Upload Throughput |
---|---|---|---|
Internet | Web surfing | 0.5–40 Mbps, 150–1500 pps | 0–0.4 Mbps, 50–300 pps |
Multimedia | Video streaming | 5.5–6.2 Mbps, 1800–2200 pps | 0–0.2 Mbps, 0–20 pps |
Security | Sensors and surveillance stream | 0–0.2 Mbps, 0–20 pps | 2.8–3.2 Mbps, 820–940 pps |
Slice | SliceID | Traffic Type | Evaluation Tool |
---|---|---|---|
Internet (NET) | 11111 | HTTP TCP | Apache/PHP script [54] |
Multimedia (MM) | 22222 | UDP Stream | D-ITG [55] |
Security (SEC) | 33333 | UDP Stream | D-ITG |
Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Slice | WEB | MM | SEC | WEB | MM | SEC | WEB | MM | SEC | WEB | MM | SEC | WEB | MM | SEC |
Service groups running | √ | × | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | × | √ |
Download % | 90 | X | 10 | 50 | 40 | 10 | 50 | 40 | 10 | 40 | 40 | 20 | 80 | X | 20 |
Upload % | 50 | X | 50 | 30 | 20 | 50 | 30 | 20 | 50 | 20 | 10 | 70 | 30 | X | 70 |
Download Min (Kbps) | 2000 | X | 500 | 2000 | 6000 | 500 | 2000 | 6000 | 500 | 1000 | 4000 | 200 | 1000 | X | 200 |
Upload Min (Kbps) | 500 | X | 2000 | 500 | 500 | 2000 | 500 | 500 | 2000 | 1200 | 200 | 2000 | 1200 | X | 2000 |
Priority | 3 | X | 1 | 3 | 2 | 1 | 3 | 2 | 1 | 1 | 3 | 2 | 1 | X | 2 |
Link bandwidth cap | 100/100 Mbps | 100/100 Mbps | 10/5 Mbps | 10/5 Mbps | 10/5 Mbps |
Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Slice | WEB | MM | SEC | WEB | MM | SEC | WEB | MM | SEC | WEB | MM | SEC | WEB | MM | SEC |
Download Mbps | 90 | X | 10 | 50 | 40 | 10 | 3 | 6 | 1 | 4 | 4 | 2 | 8 | X | 2 |
Upload Mbps | 50 | X | 50 | 30 | 20 | 50 | 1.5 | 1 | 2.5 | 1.2 | 0.3 | 3.5 | 1.5 | X | 3.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bojović, P.D.; Malbašić, T.; Vujošević, D.; Martić, G.; Bojović, Ž. Dynamic QoS Management for a Flexible 5G/6G Network Core: A Step toward a Higher Programmability. Sensors 2022, 22, 2849. https://doi.org/10.3390/s22082849
Bojović PD, Malbašić T, Vujošević D, Martić G, Bojović Ž. Dynamic QoS Management for a Flexible 5G/6G Network Core: A Step toward a Higher Programmability. Sensors. 2022; 22(8):2849. https://doi.org/10.3390/s22082849
Chicago/Turabian StyleBojović, Petar D., Teodor Malbašić, Dušan Vujošević, Goran Martić, and Živko Bojović. 2022. "Dynamic QoS Management for a Flexible 5G/6G Network Core: A Step toward a Higher Programmability" Sensors 22, no. 8: 2849. https://doi.org/10.3390/s22082849
APA StyleBojović, P. D., Malbašić, T., Vujošević, D., Martić, G., & Bojović, Ž. (2022). Dynamic QoS Management for a Flexible 5G/6G Network Core: A Step toward a Higher Programmability. Sensors, 22(8), 2849. https://doi.org/10.3390/s22082849