High-Speed Continuous Wavelet Transform Processor for Vital Signal Measurement Using Frequency-Modulated Continuous Wave Radar
Abstract
:1. Introduction
2. CWT Algorithm and Hardware Architecture
2.1. CWT Algorithm
2.2. FFT-Based CWT Hardware Architecture
3. Hardware Architecture of the Proposed CWT Processor
4. Implementation Results
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, K.; Schellenberger, S.; Will, C.; Steigleder, T.; Michler, F.; Fuchs, J.; Weigel, R.; Ostgathe, C.; Koelpin, A. A dataset of radar-recorded heart sounds and vital signs including synchronised reference sensor signals. Sci. Data 2020, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Khanam, F.-T.-Z.; Perera, A.G.; Al-Naji, A.; Gibson, K.; Chahl, J. Non-Contact Automatic Vital Signs Monitoring of Infants in a Neonatal Intensive Care Unit Based on Neural Networks. J. Imaging 2021, 7, 122. [Google Scholar] [CrossRef]
- Antolinos, E.; García-Rial, F.; Hernández, C.; Montesano, D.; Godino-Llorente, J.I.; Grajal, J. Cardiopulmonary Activity Monitoring Using Millimeter Wave Radars. Remote Sens. 2020, 12, 2265. [Google Scholar] [CrossRef]
- Lee, Y.S.; Pathirana, P.N.; Steinfort, C.L.; Caelli, T. Monitoring and Analysis of Respiratory Patterns Using Microwave Doppler Radar. IEEE J. Transl. Eng. Health Med. 2014, 2, 1800912. [Google Scholar] [CrossRef] [PubMed]
- Mikhelson, I.V.; Bakhtiari, S.; Elmer, T.W., 2nd; Sahakian, A.V. Remote sensing of patterns of cardiac activity on an ambulatory subject using millimeter-wave interferometry and statistical methods. Med. Biol. Eng. Comput. 2013, 51, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, A.; Sibuet, N.; Hornero, G.; Casas, O. Non-Contact Video-Based Assessment of the Respiratory Function Using a RGB-D Camera. Sensors 2021, 21, 5605. [Google Scholar] [CrossRef]
- Abbas, A.K.; Heimann, K.; Jergus, K.; Orlikowsky, T.; Leonhardt, S. Neonatal non-contact respiratory monitoring based on real-time infrared thermography. BioMed. Eng. OnLine 2011, 10, 93. [Google Scholar] [CrossRef] [Green Version]
- Tariq, A.; Ghafouri-Shiraz, H. Vital signs detection using Doppler radar and continuous wavelet Transform. In Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Rome, Italy, 11–15 April 2011; pp. 285–288. [Google Scholar]
- Zhang, X.; Yang, X.; Ding, Y.; Wang, Y.; Zhou, J.; Zhang, L. Contactless Simultaneous Breathing and Heart Rate Detections in Physical Activity Using IR-UWB Radars. Sensors 2021, 21, 5503. [Google Scholar] [CrossRef]
- Rissacher, D.; Galy, D. Cardiac radar for biometric identification using nearest neighbour of continuous wavelet transform peaks. In Proceedings of the IEEE International Conference on Identity, Security and Behavior Analysis (ISBA 2015), Hong Kong, 23–25 March 2015; pp. 1–6. [Google Scholar]
- Tomii, S.; Ohtsuki, T. Heartbeat detection by using Doppler radar with wavelet transform based on scale factor learning. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 483–488. [Google Scholar]
- Hu, X.; Jin, T. Short-Range Vital Signs Sensing Based on EEMD and CWT Using IR-UWB Radar. Sensors 2016, 16, 2025. [Google Scholar] [CrossRef] [Green Version]
- Zhangi, T.; Valerio, G.; Sarrazin, J.; Istrate, D. Wavelet-based analysis of 60 GHz Doppler radar for non-stationary vital sign monitoring. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017; pp. 1876–1877. [Google Scholar]
- Li, M.; Lin, J. Wavelet-Transform-Based Data-Length-Variation Technique for Fast Heart Rate Detection Using 5.8-GHz CW Doppler Radar. IEEE Trans. Microw. Theory Tech. 2018, 66, 568–576. [Google Scholar] [CrossRef]
- Van, N.T.P.; Tang, L.; Singh, A.; Minh, N.D.; Mukhopadhyay, S.C.; Hasan, S.F. Self-Identification Respiratory Disorder Based on Continuous Wave Radar Sensor System. IEEE Access 2019, 7, 40019–40026. [Google Scholar] [CrossRef]
- Wang, F.; Horng, T.; Peng, K.; Jau, J.; Li, J.; Chen, C. Detection of Concealed Individuals Based on Their Vital Signs by Using a See-Through-Wall Imaging System with a Self-Injection-Locked Radar. IEEE Trans. Microw. Theory Tech. 2013, 61, 696–704. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Muñoz-Ferreras, J.; Tang, Y.; Liu, C.; Gómez-García, R.; Ran, L.; Li, C. A Portable FMCW Interferometry Radar with Programmable Low-IF Architecture for Localization, ISAR Imaging, and Vital Sign Tracking. IEEE Trans. Microw. Theory Tech. 2017, 65, 1334–1344. [Google Scholar] [CrossRef]
- Fletcher, R.R.; Kulkarni, S. Wearable Doppler radar with integrated antenna for patient vital sign monitoring. In Proceedings of the 2010 IEEE Radio and Wireless Symposium (RWS), New Orleans, LA, USA, 10–14 January 2010; pp. 276–279. [Google Scholar]
- Kukkapalli, R.; Banerjee, N.; Robucci, R.; Kostov, Y. Micro-radar wearable respiration monitor. In Proceedings of the IEEE Sensors, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [Google Scholar]
- Zito, D.; Pepe, D.; Neri, B.; De Rossi, D.; Lanata, A.; Tognetti, A.; Scilingo, E. Wearable System-on-a-Chip UWB Radar for Health Care and its Application to the Safety Improvement of Emergency Operators. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 2651–2654. [Google Scholar]
- Johnson, J.E.; Shay, O.; Kim, C.; Liao, C. Wearable Millimeter-Wave Device for Contactless Measurement of Arterial Pulses. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1525–1534. [Google Scholar] [CrossRef] [PubMed]
- Barak, I.S. Microwave Contactless Heart Rate Sensor. U.S. Patent Grant 9,713,434 B2, 25 July 2017. [Google Scholar]
- Tang, M.; Liao, C.; Wang, F.; Horng, T. Noncontact Pulse Transit Time Measurement Using a Single-Frequency Continuous-Wave Radar. In Proceedings of the 2018 IEEE/MTT-S International Microwave Symposium—IMS, Philadelphia, PA, USA, 10–15 June 2018; pp. 1409–1412. [Google Scholar]
- RamaRaju, P.V.; AnogjnaAurora, N.; Rao, V.M. Relevance of wavelet transform for taxonomy of EEG signals. In Proceedings of the 2011 3rd International Conference on Electronics Computer Technology, Kanyakumari, India, 8–10 April 2011; pp. 466–470. [Google Scholar]
- Diery, A.; Rowlands, D.; Cutmore, T.R.H.; James, D. Automated ECG diagnostic P-wave analysis using wavelets. Comput. Methods Programs Biomed. 2011, 101, 33–43. [Google Scholar] [CrossRef]
- Wang, F.; Liu, J.; Song, P.; Gong, J.; Peng, W.; Liu, G.; Chen, M.; Wang, Y. Multimodal optical excitation pulsed thermography: Enhanced recognize debonding defects of the solid propellant rocket motor cladding layer. Mech. Syst. Sig. Process. 2022, 163, 108164. [Google Scholar] [CrossRef]
- Wang, F.; Yue, Z.; Liu, J.; Qi, H.; Sun, W.; Chen, M.; Wang, Y.; Yue, H. Quantitative imaging of printed circuit board (PCB) delamination defects using laser-induced ultrasound scanning imaging. J. Appl. Phys. 2022, 131, 053101. [Google Scholar] [CrossRef]
- Řondík, T.; Ciniburk, J. Comparison of various approaches for P3 component detection using basic methods for signal processing. In Proceedings of the 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI), Shanghai, China, 15–17 October 2011; pp. 698–702. [Google Scholar]
- Qassim, Y.T.; Cutmore, T.; James, D.; Rowlands, D. FPGA implementation of Morlet continuous wavelet transform for EEG analysis. In Proceedings of the 2012 International Conference on Computer and Communication Engineering (ICCCE), Kuala Lumpur, Malaysia, 3–5 July 2012; pp. 59–64. [Google Scholar]
- Qassim, Y.T.; Cutmore, T.R.; Rowlands, D.D. Optimized FPGA based continuous wavelet transform. Comput. Elect. Eng. 2016, 49, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Jeon, H.; Jung, Y.; Lee, S.; Jung, Y. Area-Efficient Short-Time Fourier Transform Processor for Time–Frequency Analysis of Non-Stationary Signals. Appl. Sci. 2020, 10, 7208. [Google Scholar] [CrossRef]
- Jung, Y.; Yoon, H.; Kim, J. New efficient FFT algorithm and pipeline implementation results for OFDM/DMT applications. IEEE Trans. Consum. Electron. 2003, 49, 14–20. [Google Scholar] [CrossRef]
- He, S.; Torkelson, M. A new approach to pipeline FFT processor. In Proceedings of the International Conference on Parallel Processing, Bloomingdale, IL, USA, 12–16 August 1996; pp. 766–770. [Google Scholar]
- Srinivas, N.; Kumar, P.K.; Pradhan, G. Low latency architecture design and implementation for short-time fourier transform algorithm on FPGA. In Proceedings of the 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), Tel Aviv, Israel, 13–15 November 2017; pp. 1–5. [Google Scholar]
- Sansaloni, T.; Perex-Pascual, A.; Torres, V.; Valls, J. Efficient pipeline FFT processors for WLAN MIMO-OFDM systems. Electron. Lett. 2005, 41, 1043–1044. [Google Scholar] [CrossRef]
- Lee, T.Y.; Huang, C.H.; Chen, W.C.; Liu, M.J. A low-area dynamic reconfigurable MDC FFT processor design. Microprocess. Microsyst. 2016, 42, 227–234. [Google Scholar] [CrossRef]
- Lee, S.; Jung, Y.; Kim, J. Low complexity pipeline FFT processor for MIMO-OFDM systems. IEICE Electron. Express 2007, 4, 750–754. [Google Scholar] [CrossRef] [Green Version]
- Jang, S.H.; Yang, G.J.; Lee, S.J.; Jung, Y.H. Area-efficient FFT processor for MIMO-OFDM based SDR systems. IEICE Electron. Express 2013, 10, 20130490. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Jung, Y. Scalable FFT processor for MIMO-OFDM based SDR systems. In Proceedings of the IEEE 5th International Symposium on Wireless Pervasive Computing 2010, Modena, Italy, 5–7 May 2010; pp. 517–521. [Google Scholar]
- Zynq UltraScale+ MPSoC ZCU104 Evaluation Kit; XILINX: San Jose, CA, USA; Available online: https://www.xilinx.com/products/boards-and-kits/zcu104.html (accessed on 13 April 2022).
- BGT60TR13C 60 GHz Radar Sensor; Infineon Technologies: Neubiberg, Germany; Available online: https://www.infineon.com/dgdl/Infineon-BGT60TR13CDataSheet-DataSheet-v01_00-EN.pdf?fileId=8ac78c8c7d718a49017d94bac88e5d43 (accessed on 2 February 2022).
- MATLAB R2020a; MathWorks: Natick, MA, USA; Available online: https://www.mathworks.com/products/new_products/release2020a.html (accessed on 2 February 2022).
- 9th Generation Intel® Core™ i7 Processors; Intel: Santa Clara, CA, USA; Available online: https://ark.intel.com/content/www/us/en/ark/products/186604/intel-core-i79700k-processor-12m-cache-up-to-4-90-ghz.html (accessed on 13 April 2022).
- Bostanov, V. BCI competition 2003-data sets Ib and IIb: Feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram. IEEE Trans. Biomed. Eng. 2004, 51, 1057–1061. [Google Scholar] [CrossRef]
- Patil, S.; Abel, E.W. Real time continuous wavelet transform implementation on a DSP processor. J. Med. Eng. Technol. 2009, 33, 223–231. [Google Scholar] [CrossRef]
- Sun, K.; Pan, X.; Ping, L. A Reconfigurable Computing Engine for Wavelet Transforms. In Proceedings of the 2007 IEEE International Parallel and Distributed Processing Symposium, Long Beach, CA, USA, 26–30 March 2007; pp. 1–5. [Google Scholar]
- Mao, L.; Ma, J.; Chen, H.; Ma, Y.; Chen, S.; Xu, C. 2D-CWT IP core design and implementation for fringe pattern analysis. IOP Conf. Ser. Mater. Sci. Eng. 2019, 569, 032071. [Google Scholar] [CrossRef]
Block | No. of LUT | No. of FF | DSP Block |
---|---|---|---|
R2SDF | 41,179 | 38,789 | 16 |
Complex multiplier | 611 | 435 | 16 |
MRMDC | 47,394 | 69,299 | 40 |
Others | 757 | 75 | 0 |
Total | 89,941 | 108,598 | 92 |
Task | Cycles for 512-Point Signal (4 Scales) | Cycles for 1024-Point Signal (24 Scales) | |
---|---|---|---|
FFT (R2SDF) | Compute | 530 | 1060 |
SRAM | Writing | 512 | 1024 |
IFFT (MRMDC) | Compute | 531 | 1047 |
Data output | 512 | 6144 | |
Total number of cycles | 2085 | 9275 | |
Total processing time | 7 s @302 MHz | 31 s @302 MHz |
Parameter | Value |
---|---|
Center frequency | 60 GHz |
Bandwidth | 5.5 GHz |
Antenna gain (single TX / RX) | 5 dBi |
Maximum distance | 15 m |
FoV (half power beam width) | 90° |
Signal | Input Data | No. of Scales | Processing Time (ms) | Reduction | |
---|---|---|---|---|---|
Length | MATLAB | Proposed | (Fold) | ||
Heartbeat | 1024-point | 24 | 1.5 | 0.031 | 48.4 |
Respiration | 20 | 1.1 | 0.027 | 40.7 |
Work | [30] | This Work |
---|---|---|
FPGA device | Spartan-3AN | Zynq UltraScale+ |
Technology (nm) | 90 | 16 |
Signal point (N) | 1024 | 8/16/32/64/128/256/512/1024 |
No. of scale | 21 | 24 |
Max. Freq (MHz) 1 | 133 | 302 |
Processing time (ms) | 0.57 | 0.031 (max) |
(ms) | 0.116 | 0.031 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, C.; Lee, S.; Jung, Y. High-Speed Continuous Wavelet Transform Processor for Vital Signal Measurement Using Frequency-Modulated Continuous Wave Radar. Sensors 2022, 22, 3073. https://doi.org/10.3390/s22083073
Bae C, Lee S, Jung Y. High-Speed Continuous Wavelet Transform Processor for Vital Signal Measurement Using Frequency-Modulated Continuous Wave Radar. Sensors. 2022; 22(8):3073. https://doi.org/10.3390/s22083073
Chicago/Turabian StyleBae, Chanhee, Seongjoo Lee, and Yunho Jung. 2022. "High-Speed Continuous Wavelet Transform Processor for Vital Signal Measurement Using Frequency-Modulated Continuous Wave Radar" Sensors 22, no. 8: 3073. https://doi.org/10.3390/s22083073
APA StyleBae, C., Lee, S., & Jung, Y. (2022). High-Speed Continuous Wavelet Transform Processor for Vital Signal Measurement Using Frequency-Modulated Continuous Wave Radar. Sensors, 22(8), 3073. https://doi.org/10.3390/s22083073