Standoff Detection and Identification of Liquid Chemicals on a Reflective Substrate Using a Wavelength-Tunable Quantum Cascade Laser
Abstract
:1. Introduction
2. Detector Configuration
3. Experimental Configuration
3.1. Reflective Substrates
3.2. Analyte Chemicals
4. Spectral Analysis and Identification
4.1. Multiple Nonlinear Regression
4.2. Deep Learning Classification
5. Experiments
5.1. DEP Experiment
5.2. DEP and DMMP Mixture Experiment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bogue, R. Remote chemical sensing: A review of techniques and recent developments. Sens. Rev. 2018, 38, 453–457. [Google Scholar] [CrossRef]
- Jindal, M.K.; Mainuddin, M.; Veerabuthiran, S.; Razdan, A.K. Laser-Based Systems for Standoff Detection of CWA: A Short Review. IEEE Sens. J. 2020, 21, 4085–4096. [Google Scholar] [CrossRef]
- Li, J.; Yu, Z.; Du, Z.; Ji, Y.; Liu, C. Standoff chemical detection using laser absorption spectroscopy: A review. Remote Sens. 2020, 12, 2771. [Google Scholar] [CrossRef]
- Patel, C. Laser photoacoustic spectroscopy helps fight terrorism: High sensitivity detection of chemical warfare agent and explosives. Eur. Phys. J. Spec. Top. 2008, 153, 1–18. [Google Scholar] [CrossRef]
- Sun, J.; Ding, J.; Liu, N.; Yang, G.; Li, J. Detection of multiple chemicals based on external cavity quantum cascade laser spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 191, 532–538. [Google Scholar] [CrossRef]
- Akhgar, C.K.; Ramer, G.; Żbik, M.; Trajnerowicz, A.; Pawluczyk, J.; Schwaighofer, A.; Lendl, B. The next generation of IR spectroscopy: EC-QCL-based mid-IR transmission spectroscopy of proteins with balanced detection. Anal. Chem. 2020, 92, 9901–9907. [Google Scholar] [CrossRef]
- Kelley, D.B.; Wood, D.; Goyal, A.K.; Kotidis, P. High-Speed and Large-Area Scanning of Surfaces for Trace Chemicals Using Wavelength-Tunable Quantum Cascade Lasers. In Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIX; SPIE: Bellingham, WA, USA, 2018; p. 1062909. [Google Scholar]
- Padilla-Jiménez, A.C.; Ortiz-Rivera, W.; Castro-Suarez, J.R.; Ríos-Velázquez, C.; Vázquez-Ayala, I.; Hernández-Rivera, S.P. Microorganisms detection on substrates using QCL spectroscopy. In Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIV; SPIE: Bellingham, WA, USA, 2013; p. 871019. [Google Scholar]
- Ostendorf, R.; Butschek, L.; Hugger, S.; Fuchs, F.; Yang, Q.; Jarvis, J.; Schilling, C.; Rattunde, M.; Merten, A.; Grahmann, J. Recent Advances and Applications of External Cavity-QCLs Towards Hyperspectral Imaging for Standoff Detection and Real-Time Spectroscopic Sensing of Chemicals. Photonics 2016, 3, 28. [Google Scholar] [CrossRef] [Green Version]
- Witinski, M.F.; Blanchard, R.; Pfluegl, C.; Diehl, L.; Li, B.; Krishnamurthy, K.; Pein, B.C.; Azimi, M.; Chen, P.; Ulu, G. Portable standoff spectrometer for hazard identification using integrated quantum cascade laser arrays from 6.5 to 11 µm. Opt. Express 2018, 26, 12159–12168. [Google Scholar] [CrossRef] [Green Version]
- Theophile, T. Infrared Spectroscopy—Materials Science, Engineering and Technology; IntechOpen: London, UK, 2012; Volume 6. [Google Scholar]
- Bartelt-Hunt, S.L.; Knappe, D.R.; Barlaz, M.A. A review of chemical warfare agent simulants for the study of environmental behavior. Crit. Rev. Environ. Sci. Technol. 2008, 38, 112–136. [Google Scholar] [CrossRef]
- Linstorm, P. NIST chemistry webbook, NIST standard reference database number 69. J. Phys. Chem. Ref. Data Monogr. 1998, 9, 1–1951. [Google Scholar]
- Thériault, J.-M.; Puckrin, E.; Hancock, J.; Lecavalier, P.; Lepage, C.J.; Jensen, J.O. Passive standoff detection of chemical warfare agents on surfaces. Appl. Opt. 2004, 43, 5870–5885. [Google Scholar] [CrossRef] [PubMed]
- Renaud, O.; Victoria-Feser, M.-P. A robust coefficient of determination for regression. J. Stat. Plan. Inference 2010, 140, 1852–1862. [Google Scholar] [CrossRef] [Green Version]
- DeWitt, K. Machine learning for better trace chemical detection. In Algorithms, Technologies, and Applications for Multispectral and Hyperspectral Imagery XXV; SPIE: Bellingham, WA, USA, 2019; p. 109861A. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Son, J.; Yu, J.; Lee, J. Standoff Detection and Identification of Liquid Chemicals on a Reflective Substrate Using a Wavelength-Tunable Quantum Cascade Laser. Sensors 2022, 22, 3172. https://doi.org/10.3390/s22093172
Park S, Son J, Yu J, Lee J. Standoff Detection and Identification of Liquid Chemicals on a Reflective Substrate Using a Wavelength-Tunable Quantum Cascade Laser. Sensors. 2022; 22(9):3172. https://doi.org/10.3390/s22093172
Chicago/Turabian StylePark, Seongjin, Jeongwoo Son, Jaeyeon Yu, and Jongwon Lee. 2022. "Standoff Detection and Identification of Liquid Chemicals on a Reflective Substrate Using a Wavelength-Tunable Quantum Cascade Laser" Sensors 22, no. 9: 3172. https://doi.org/10.3390/s22093172
APA StylePark, S., Son, J., Yu, J., & Lee, J. (2022). Standoff Detection and Identification of Liquid Chemicals on a Reflective Substrate Using a Wavelength-Tunable Quantum Cascade Laser. Sensors, 22(9), 3172. https://doi.org/10.3390/s22093172