Application of Intensity-Based Coherent Optical Time Domain Reflectometry to Bridge Monitoring
Abstract
:1. Introduction
2. Working Principle of an Intensity-Based COTDR System
3. Materials and Measurement Method
4. Results and Discussion
4.1. Sawing-Induced Vibration
4.2. Unexpected Vibration
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glišić, B.; Inaudi, D. Fibre Optic Methods for Structural Health Monitoring; John and Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 154–196. [Google Scholar] [CrossRef]
- Luo, L.; Mei, Y.; De Battista, N.; Kechavarzi, C.; Soga, K. Repeatability precision error analysis of the distributed fiber optic strain monitoring. Struct. Control Health Monit. 2021, 28, e2768. [Google Scholar] [CrossRef]
- Motil, A.; Bergman, A.; Tur, M. State of the art of Brillouin fiber-optic distributed sensing. Opt. Laser Technol. 2016, 78, 81–103. [Google Scholar] [CrossRef]
- Oskoui, E.A.; Taylor, T.; Ansari, F. Method and monitoring approach for distributed detection of damage in multi-span continuous bridges. Eng. Struct. 2019, 189, 385–395. [Google Scholar] [CrossRef]
- Moffat, R.; Sotomayor, J.; Beltrán, J.F. Estimating tunnel wall displacements using a simple sensor based on a Brillouin optical time domain reflectometer apparatus. Int. J. Rock Mech. Min. 2015, 75, 233–243. [Google Scholar] [CrossRef]
- Puzrin, A.M.; Iten, M.; Fischli, F. Monitoring of ground displacements using borehole-embedded distributed fibre optic sensors. Q. J. Eng. Geol. Hydrogeol. 2019, 53, 31–38. [Google Scholar] [CrossRef]
- Lienhart, W. Case studies of high-sensitivity monitoring of natural and engineered slopes. J. Rock Mech. Geotech. Eng. 2015, 7, 379–384. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Yi, X.; Zhang, J.; Lin, C. PPP-BOTDA distributed optical fiber sensing technology and its application to the Baishuihe landslide. Front. Earth Sci. 2021, 9, 660918. [Google Scholar] [CrossRef]
- Feng, C.; Bhatta, H.D.; Bohbot, J.; Davidi, R.; Lu, X.; Schneider, T.; Tur, M. Gain spectrum engineering in slope-assisted dynamic Brillouin optical time-domain analysis. J. Lightwave Technol. 2020, 38, 6967–6975. [Google Scholar] [CrossRef]
- He, Z.; Liu, Q. Optical fiber distributed acoustic sensors: A review. J. Lightwave Technol. 2021, 39, 3671–3686. [Google Scholar] [CrossRef]
- Lu, X.; Soto, M.A.; Thévenaz, L. Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry. Opt. Express 2017, 25, 16059–16071. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Pan, Z.; Fang, Z.; Ye, Q.; Lu, B.; Cai, H.; Qu, R. Ultra-broadband phase-sensitive optical time-domain reflectometry with a temporally sequenced multi-frequency source. Opt. Lett. 2015, 40, 5192–5195. [Google Scholar] [CrossRef] [PubMed]
- Qu, S.; Liu, Z.; Xu, Y.; Cong, Z.; Zhou, D.; Wang, S.; Li, Z.; Wang, H.; Qin, Z. Phase sensitive optical time domain reflectometry based on compressive sensing. J. Lightwave Technol. 2019, 37, 5766–5772. [Google Scholar] [CrossRef]
- Williams, E.F.; Fernández-Ruiz, M.R.; Magalhaes, R.; Vanthillo, R.; Zhan, Z.; González-Herráez, M.; Martins, H.F. Distributed sensing of microseisms and teleseisms with submarine dark fibers. Nat. Commun. 2019, 10, 5778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walter, F.; Gräff, D.; Lindner, F.; Paitz, P.; Köpfli, M.; Chmiel, M.; Fichtner, A. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain. Nat. Commun. 2020, 11, 2436. [Google Scholar] [CrossRef]
- Nair, A.; Cai, C.S. Acoustic emission monitoring of bridges: Review and case studies. Eng. Struct. 2010, 32, 1704–1714. [Google Scholar] [CrossRef]
- Cheng, L.; Jansen, R.; Burggraaf, H.; Jong, W.D.; Toet, P.; Doppenberg, E. Dynamic load monitoring of a concrete bridge using a fiber optic distributed acoustic sensing (DAS) system. In Proceedings of the 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures, Potsdam, Germany, 27–29 August 2019. [Google Scholar]
- Liehr, S.; Münzenberger, S.; Krebber, K. Wavelength-scanning coherent OTDR for dynamic high strain resolution sensing. Opt. Express 2018, 26, 10573–10588. [Google Scholar] [CrossRef]
- Kaplan, F.; Steinbock, O.; Saloga, K.; Ebell, G.; Schmidt, S. Überwachung der Brücke am Altstädter Bahnhof. Bautechnik 2022, 99, 222–230. [Google Scholar] [CrossRef]
- Lu, X.; Thomas, P.J. Numerical modeling of Fcy OTDR sensing using a refractive index perturbation approach. J. Lightwave Technol. 2020, 38, 974–980. [Google Scholar] [CrossRef]
- Taylor, H.F.; Lee, C.E. Apparatus and Method for Fiber Optic Intrusion Sensing. US Patent 5194847A, 16 March 1993. [Google Scholar]
- Hartog, A.H. An Introduction to Distributed Optical Fibre Sensors; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Lu, X.; Soto, M.A.; Zhang, L.; Thévenaz, L. Spectral properties of the signal in phase-sensitive optical time-domain reflectometry with direct detection. J. Lightwave Technol. 2020, 38, 1513–1521. [Google Scholar] [CrossRef]
- Lu, X.; Soto, M.A.; Thévenaz, L. Optimal detection bandwidth for phase-sensitive optical time-domain reflectometry. In Proceedings of the Sixth European Workshop on Optical Fibre Sensors (EWOFS’2016), Limerick, Ireland, 30 May 2016; p. 99162N. [Google Scholar] [CrossRef]
- Tejedor, J.; Martins, H.; Piote, D.; Macias-Guarasa, J.; Pastor-Graells, J.; Martin-Lopez, S.; Guillén, P.; Smet, F.; Postvoll, W.; González-Herráez, M. Toward prevention of pipeline integrity threats using a smart fiber-optic surveillance system. J. Lightwave Technol. 2016, 34, 4445–4453. [Google Scholar] [CrossRef] [Green Version]
- Ning, I.L.C.; Sava, P. Multicomponent distributed acoustic sensing: Concept and theory. Geophysics 2018, 83, P1–P8. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, L.; Liu, H.; Peng, P.; Liu, Z.; Shen, S.; Chen, N.; Zheng, S.; Li, J.; Pang, F. 3D printing technique-improved phase-sensitive OTDR for breakdown discharge detection of gas-insulated switchgear. Sensors 2020, 20, 1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hicke, K.; Chruscicki, S.; Münzenberger, S. Urban traffic monitoring using distributed acoustic sensing along laid fiber optic cables. In Proceedings of the EAGE GeoTech 2021 Second EAGE Workshop on Distributed Fibre Optic Sensing, Online. 1–5 March 2021. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Chruscicki, S.; Schukar, M.; Münzenberger, S.; Krebber, K. Application of Intensity-Based Coherent Optical Time Domain Reflectometry to Bridge Monitoring. Sensors 2022, 22, 3434. https://doi.org/10.3390/s22093434
Lu X, Chruscicki S, Schukar M, Münzenberger S, Krebber K. Application of Intensity-Based Coherent Optical Time Domain Reflectometry to Bridge Monitoring. Sensors. 2022; 22(9):3434. https://doi.org/10.3390/s22093434
Chicago/Turabian StyleLu, Xin, Sebastian Chruscicki, Marcus Schukar, Sven Münzenberger, and Katerina Krebber. 2022. "Application of Intensity-Based Coherent Optical Time Domain Reflectometry to Bridge Monitoring" Sensors 22, no. 9: 3434. https://doi.org/10.3390/s22093434
APA StyleLu, X., Chruscicki, S., Schukar, M., Münzenberger, S., & Krebber, K. (2022). Application of Intensity-Based Coherent Optical Time Domain Reflectometry to Bridge Monitoring. Sensors, 22(9), 3434. https://doi.org/10.3390/s22093434