The Concept of a Quantum Edge Simulator: Edge Computing and Sensing in the Quantum Era
Abstract
:1. Introduction
2. Objective
- What are the unique characteristics of quantum sensors to qualify as edge sensors? Are the characteristics generalizable to encompass classical sensors?
- What are the implications of sensor intelligence, which can vary as a function of distance (from the sensor to the user)? For example, how different cyber and cyber physical security measures should be implemented for a zero-intelligence sensor (one that generates only raw data) versus an intelligent sensor (one that is capable of some processing)?
- How do we model spatial and temporal variation (e.g., mobility) of the quantum sensors that impact qubit travel or mobility parameters, including latency and energy consumption?
- Is there a need for unifying the different quantum computing platforms? In an ideal scenario, one may envision a drag and drop of pre-defined quantum processor architectures at various locations of the network.
- How do we distribute tasks/loads, decompose algorithms, and allocate resources across multiple edge nodes?
- What specific resources and edge-native algorithms are needed to devise an EQC simulator?
- What are the unique features of an EQC system that classical counterparts lack?
- With enhanced quantum processing and communications, can there be collective effects that could be observed across multiple EQC nodes? If so, what models can be incorporated to account for such information?
- What other simulation-salient system properties and parameters are needed?
3. Motivation
4. Research Strategy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schneider, D. The Exascale Era is Upon Us: The Frontier supercomputer may be the first to reach 1,000,000,000,000,000,000 operations per second. IEEE Spectrum. 2022, 59, 34–35. [Google Scholar] [CrossRef]
- Diaz-Montes, J.; Xie, Y.; Rodero, I.; Zola, J.; Ganapathysubramanian, B.; Parashar, M. Federated Computing for the Masses--Aggregating Resources to Tackle Large-Scale Engineering Problems. Comput. Sci. Eng. 2014, 16, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Passian, A.; Imam, N. Nanosystems, Edge Computing, and the Next Generation Computing Systems. Sensors 2019, 19, 4048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ai, Y.; Peng, M.G.; Zhang, K.C. Edge computing technologies for Internet of Things: A primer. Digit. Commun. Netw. 2018, 4, 77–86. [Google Scholar] [CrossRef]
- Gill, S.S.; Kumar, A.; Singh, H.; Singh, M.; Kaur, K.; Usman, M.; Buyya, R. Quantum computing: A taxonomy, systematic review and future directions. Softw. Pr. Exper. 2022, 52, 66–114. [Google Scholar] [CrossRef]
- Kimble, H.J. The quantum internet. Nature 2008, 453, 1023–1030. [Google Scholar] [CrossRef]
- Wehner, S.; Elkouss, D.; Hanson, R. Quantum internet: A vision for the road ahead. Science 2018, 362, eaam9288. [Google Scholar] [CrossRef] [Green Version]
- Kozlowski, W.; Wehner, S. Towards Large-Scale Quantum Networks. In Proceedings of the 6th Acm International Conference on Nanoscale Computing and Communication, Dublin, Ireland, 25–27 September 2019. [Google Scholar]
- Petrova-El Sayed, M.; Benedyczak, K.; Rutkowski, A.; Schuller, B. Federated Computing on the Web: The UNICORE Portal. In Proceedings of the 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (Mipro), Opatija, Croatia, 30 May–3 June 2016; pp. 174–179. [Google Scholar]
- Ahmed, O.S.; Omer, E.E.; Alshawwa, S.Z.; Alazzam, M.B.; Khan, R.A. Approaches to Federated Computing for the Protection of Patient Privacy and Security Using Medical Applications. Appl. Bionics Biomech. 2022, 2022, 1201339. [Google Scholar] [CrossRef]
- Martin Ruefenacht, E.A. Bringing quantum acceleration to supercomputers. In IQM; Leibniz Supercomputing Centre: Garching bei München, Germany, 2022. [Google Scholar]
- Majumder, S.; Andreta de Castro, L.; Brown, K.R. Real-time calibration with spectator qubits. Npj Quantum. Inform. 2020, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Marciniak, C.D.; Feldker, T.; Pogorelov, I.; Kaubruegger, R.; Vasilyev, D.V.; van Bijnen, R.; Schindler, P.; Zoller, P.; Blatt, R.; Monz, T. Optimal metrology with programmable quantum sensors. Nature 2022, 603, 604–609. [Google Scholar] [CrossRef]
- Vorobyov, V.; Zaiser, S.; Abt, N.; Meinel, J.; Dasari, D.; Neumann, P.; Wrachtrup, J. Quantum Fourier transform for nanoscale quantum sensing. Npj Quantum. Inform. 2021, 7, 124. [Google Scholar] [CrossRef]
- Stein, S.; Wiebe, N.; Ding, Y.F.; Bo, P.; Kowalski, K.; Baker, N.; Ang, J.; Li, A. Ensembled Quantum Computing for Variational Quantum Algorithms. In Proceedings of the 2022 the 49th Annual International Symposium on Computer Architecture (Isca ‘22), New York, NY, USA, 18–22 June 2022; pp. 59–71. [Google Scholar]
- Komar, P.; Kessler, E.M.; Bishof, M.; Jiang, L.; Sørensen, A.S.; Ye, J.; Lukin, M.D. A quantum network of clocks. Nat. Phys. 2014, 10, 582–587. [Google Scholar] [CrossRef] [Green Version]
- Nichol, B.C.; Srinivas, R.; Nadlinger, D.P.; Drmota, P.; Main, D.; Araneda, G.; Ballance, C.J.; Lucas, D.M. An elementary quantum network of entangled optical atomic clocks. Nature 2022, 609, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.; Nacif, J.; Magalhaes, S.; de Almeida, T.; Pacifico, R. Be a Simulator Developer and Go Beyond in Computing Engineering. Front. Educ. Conf. (Fie) 2015, 2015, 2421–2428. [Google Scholar]
- ARM. Available online: https://www.arm.com (accessed on 18 October 2022).
- Svorobej, S.; Endo, P.T.; Bendechache, M.; Filelis-Papadopoulos, C.; Giannoutakis, K.M.; Gravvanis, G.A.; Tzovaras, D.; Byrne, J.; Lynn, T. Simulating Fog and Edge Computing Scenarios: An Overview and Research Challenges. Future Internet 2019, 11, 55. [Google Scholar] [CrossRef] [Green Version]
- Buyya, R.; Srirama, S.N. Fog and Edge Computing: Principles and Paradigms; Wiley: Hoboken, NJ, USA, 2019. [Google Scholar]
- Habaebi, M.H.; Merrad, Y.; Islam, M.R.; Elsheikh, E.A.A.; Sliman, F.M.; Mesri, M. Extending CloudSim to simulate sensor networks. Simul.-T Soc. Mod. Sim. 2022, 99, 00375497221105530. [Google Scholar] [CrossRef]
- Mahmud, R.; Pallewatta, S.; Goudarzi, M.; Buyya, R. iFogSim2: An extended iFogSim simulator for mobility, clustering, and microservice management in edge and fog computing environments. J. Syst. Softw. 2022, 190, 111351. [Google Scholar] [CrossRef]
- Freymann, R.; Shi, J.J.; Chen, J.J.; Chen, K.H. enovation of EdgeCloudSim: An Efficient Discrete-Event Approach. In Proceedings of the 2021 Sixth International Conference on Fog and Mobile Edge Computing (Fmec), Gandia, Spain, 6–9 December 2021; pp. 9–16. [Google Scholar]
- Sonmez, C.; Ozgovde, A.; Ersoy, C. EdgeCloudSim: An environment for performance evaluation of edge computing systems. T Emerg. Telecommun. T 2018, 29, e3493. [Google Scholar] [CrossRef]
- Alvarez, G.A.; Danieli, E.P.; Levstein, P.R.; Pastawski, H.M. Quantum parallelism as a tool for ensemble spin dynamics calculations. Phys. Rev. Lett. 2008, 101, 120503. [Google Scholar] [CrossRef] [Green Version]
- Gill, S.S. Quantum and blockchain based Serverless edge computing: A vision, model, new trends and future directions. Internet Technol. Let. 2021, e275. [Google Scholar] [CrossRef]
- de Oliveira, M.J. Quantum Langevin equation. J. Stat. Mech.-Theory. E 1988, 37, 4419. [Google Scholar] [CrossRef]
- Colmenares, P.J. Fokker-Planck equation of the reduced Wigner function associated to an Ohmic quantum Langevin dynamics. Phys. Rev. E 2018, 97, 052126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gyongyosi, L.; Imre, S. A Survey on quantum computing technology. Comput Sci Rev 2019, 31, 51–71. [Google Scholar] [CrossRef]
- Tang, E. Quantum Principal Component Analysis Only Achieves an Exponential Speedup Because of Its State Preparation Assumptions. Phys. Rev. Lett. 2021, 127, 060503. [Google Scholar] [CrossRef] [PubMed]
- Farahi, R.H.; Passian, A.; Tetard, L.; Thundat, T. Critical Issues in Sensor Science To Aid Food and Water Safety. Acs Nano 2012, 6, 4548–4556. [Google Scholar] [CrossRef]
- Veksler, V.D.; Buchler, N.; Hoffman, B.E.; Cassenti, D.N.; Sample, C.; Sugrim, S. Simulations in Cyber-Security: A Review of Cognitive Modeling of Network Attackers, Defenders, and Users. Front. Psychol. 2018, 9, 691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, S.; Kenny, J.P.; Wilke, J.J. Supercomputer in a Laptop: Distributed Application and Runtime Development via Architecture Simulation. High Perform. Comput. Isc High Perform. 2018, 11203, 347–359. [Google Scholar]
- Byrne, J.; Svorobej, S.; Gourinovitch, A.; Elango, D.M.; Liston, P.; Byrne, P.J.; Lynn, T. Recap Simulator: Simulation of Cloud/Edge/Fog Computing Scenarios. In Proceedings of the 2017 Winter Simulation Conference (Wsc), Las Vegas, NV, USA, 3–6 December 2017; pp. 4568–4569. [Google Scholar]
- Degen, C.L.; Reinhard, F.; Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 2017, 89, 035002. [Google Scholar] [CrossRef] [Green Version]
- Thew, R.; Jennewein, T.; Sasaki, M. Focus on quantum science and technology initiatives around the world. Quantum. Sci. Technol. 2020, 5, 010201. [Google Scholar] [CrossRef]
- Nurminen, J.K.; Meijer, A.; Salmenpera, I.; Becker, L. The Next Bottleneck after Quantum Hardware Will be Quantum Software. Ercim. News 2022, 128, 9–10. [Google Scholar]
- Litinski, D. A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery. Quantum 2019, 3, 128. [Google Scholar] [CrossRef] [Green Version]
- Sludds, A.; Bandyopadhyay, S.; Chen, Z.; Zhong, Z.; Cochrane, J.; Bernstein, L.; Bunandar, D.; Dixon, P.B.; Hamilton, S.A.; Streshinsky, M.; et al. Delocalized photonic deep learning on the internet’s edge. Science 2022, 378, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Frolov, S. Quantum computing’s reproducibility crisis: Majorana fermions. Nature 2021, 592, 350–352. [Google Scholar] [CrossRef] [PubMed]
- Pal, P.B. Dirac, Majorana, and Weyl fermions. Am. J. Phys. 2011, 79, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.Y.; Broughton, M.; Mohseni, M.; Babbush, R.; Boixo, S.; Neven, H.; McClean, J.R. Power of data in quantum machine learning. Nat. Commun. 2021, 12, 2631. [Google Scholar] [CrossRef]
- Sels, D.; Dashti, H.; Mora, S.; Demler, O.; Demler, E. Quantum approximate Bayesian computation for NMR model inference. Nat. Mach. Intell. 2020, 2, 396–402. [Google Scholar] [CrossRef]
- Hasanpour, M.; Shariat, S.; Barnaghi, P.; Hoseinitabatabaei, S.A.; Vahid, S.; Tafazolli, R. Quantum load balancing in ad hoc networks. Quantum. Inf. Process. 2017, 16, 148. [Google Scholar] [CrossRef]
- WebsiteSetup. Available online: https://websitesetup.org/news/how-many-websites-are-there/ (accessed on 18 October 2022).
- Statista. Available online: https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/ (accessed on 18 October 2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Passian, A.; Buchs, G.; Seck, C.M.; Marino, A.M.; Peters, N.A. The Concept of a Quantum Edge Simulator: Edge Computing and Sensing in the Quantum Era. Sensors 2023, 23, 115. https://doi.org/10.3390/s23010115
Passian A, Buchs G, Seck CM, Marino AM, Peters NA. The Concept of a Quantum Edge Simulator: Edge Computing and Sensing in the Quantum Era. Sensors. 2023; 23(1):115. https://doi.org/10.3390/s23010115
Chicago/Turabian StylePassian, Ali, Gilles Buchs, Christopher M. Seck, Alberto M. Marino, and Nicholas A. Peters. 2023. "The Concept of a Quantum Edge Simulator: Edge Computing and Sensing in the Quantum Era" Sensors 23, no. 1: 115. https://doi.org/10.3390/s23010115
APA StylePassian, A., Buchs, G., Seck, C. M., Marino, A. M., & Peters, N. A. (2023). The Concept of a Quantum Edge Simulator: Edge Computing and Sensing in the Quantum Era. Sensors, 23(1), 115. https://doi.org/10.3390/s23010115