A Hybrid Prognostic Method for Proton-Exchange-Membrane Fuel Cell with Decomposition Forecasting Framework Based on AEKF and LSTM
Abstract
:1. Introduction
- (1)
- We establish the decomposition forecasting framework to predict the long-term voltage degradation of PEMFC. After the decomposition by LOESS, we apply the AEKF algorithm and the LSTM neural network to predict those two components, respectively. This framework can combine the AEKF method’s advantage of predicting overall aging trends and the LSTM model’s advantage of strong nonlinear-modeling ability. An iterative structure is adopted to realize the long-term degradation voltage forecasting.
- (2)
- Based on the physical aging model, we develop three-dimensional aging factors to better characterize the fuel cell’s aging state. Considering the voltage-recovery phenomenon, we adopt a sliding-window strategy during the training of the LSTM network to improve the prediction accuracy of the model.
- (3)
- The automatic machine-learning (AutoML) method based on the genetic algorithm is adopted to optimize the hyperparameters of the LSTM network automatically, which can improve the prediction accuracy and training efficiency.
2. Methodology
2.1. The Decomposition Forecasting Framework
2.2. Dataset Analysis
2.3. Voltage Decomposition
Locally Weighted Regression
2.4. Calendar Aging Model Based on AEKF
2.4.1. Physical Aging Model
2.4.2. Parameter Identification
2.4.3. Extend Kalman Filter
- Initialization: , , where is the mathematic expectation.
- State update: , where is a-priori state estimate at step k, and is a priori estimate error covariance.
- Measurement update: , , , where , is the Kalman gain at step k, is a posteriori state estimate at step k, is a posteriori estimate error covariance at step k.
- Noise update: , where represents the mapping variance in error, and M represents averaging moving window of size.
2.5. Reversible Aging Model Based on LSTM
Long Short-Term Memory Networks
2.6. AutoML Algorithm
3. Results and Discussions
3.1. Voltage Decomposition
3.2. Calendar Aging Voltage Prediction
3.3. Reversible Aging Voltage Prediction
3.4. Final Aging Voltage Prediction
3.5. RUL Estimation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AEKF | Adaptive extended Kalman filter |
AIC | Akaike information criterion |
AutoML | Automatic machine learning |
BOP | Balance of plant |
ECSA | Electrochemical surface area |
EIS | Electrochemical impedance spectroscopy |
FC | Fuel cell |
GDL | Gas diffusion layer |
LOESS | Locally weighted regression |
LSTM | Long short-term memory (neural network) |
MAPE | Mean absolute percentage error |
PEMFC | Proton-exchange-membrane fuel cell |
RMSE | Root mean-square error |
RNN | Recurrent neural network |
RUL | Remaining useful life |
References
- Zhang, D.; Li, X.; Wang, W.; Zhao, Z. Internal Characterization-Based Prognostics for Micro-Direct-Methanol Fuel Cells under Dynamic Operating Conditions. Sensors 2022, 22, 4217. [Google Scholar] [CrossRef]
- Liu, H.; Chen, J.; Hissel, D.; Lu, J.; Hou, M.; Shao, Z. Prognostics methods and degradation indexes of proton exchange membrane fuel cells: A review. Renew. Sustain. Energy Rev. 2020, 123, 109721. [Google Scholar] [CrossRef]
- Jouin, M.; Gouriveau, R.; Hissel, D.; Péra, M.C.; Zerhouni, N. Degradations analysis and aging modeling for health assessment and prognostics of PEMFC. Reliab. Eng. Syst. Saf. 2016, 148, 78–95. [Google Scholar] [CrossRef]
- Wu, J.; Yuan, X.Z.; Martin, J.J.; Wang, H.; Zhang, J.; Shen, J.; Wu, S.; Merida, W. A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. J. Power Sources 2008, 184, 104–119. [Google Scholar] [CrossRef]
- Yan, X.; Zhou, X.; Zhao, T.; Jiang, H.; Zeng, L. A highly selective proton exchange membrane with highly ordered, vertically aligned, and subnanosized 1D channels for redox flow batteries. J. Power Sources 2018, 406, 35–41. [Google Scholar] [CrossRef]
- Aziz, M.A.; Shanmugam, S. Sulfonated graphene oxide-decorated block copolymer as a proton-exchange membrane: Improving the ion selectivity for all-vanadium redox flow batteries. J. Mater. Chem. A 2018, 6, 17740–17750. [Google Scholar] [CrossRef]
- Rajput, A.; Sharma, P.P.; Yadav, V.; Kulshrestha, V. Highly stable graphene oxide composite proton exchange membrane for electro-chemical energy application. Int. J. Hydrogen Energy 2020, 45, 16976–16983. [Google Scholar] [CrossRef]
- Chen, K.; Laghrouche, S.; Djerdir, A. Fuel cell health prognosis using Unscented Kalman Filter: Postal fuel cell electric vehicles case study. Int. J. Hydrogen Energy 2019, 44, 1930–1939. [Google Scholar] [CrossRef]
- Cigolotti, V.; Genovese, M.; Fragiacomo, P. Comprehensive review on fuel cell technology for stationary applications as sustainable and efficient poly-generation energy systems. Energies 2021, 14, 4963. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, D.; Luo, M.; Dong, Z. Load profile based empirical model for the lifetime prediction of an automotive PEM fuel cell. Int. J. Hydrogen Energy 2017, 42, 11868–11878. [Google Scholar] [CrossRef]
- Peng, C.; Chen, Y.; Chen, Q.; Tang, Z.; Li, L.; Gui, W. A Remaining Useful Life prognosis of turbofan engine using temporal and spatial feature fusion. Sensors 2021, 21, 418. [Google Scholar] [CrossRef]
- Yang, J.; Peng, Y.; Xie, J.; Wang, P. Remaining Useful Life Prediction Method for Bearings Based on LSTM with Uncertainty Quantification. Sensors 2022, 22, 4549. [Google Scholar] [CrossRef] [PubMed]
- Bressel, M.; Hilairet, M.; Hissel, D.; Bouamama, B.O. Extended Kalman filter for prognostic of proton exchange membrane fuel cell. Appl. Energy 2016, 164, 220–227. [Google Scholar] [CrossRef]
- Sutharssan, T.; Montalvao, D.; Chen, Y.K.; Wang, W.C.; Pisac, C.; Elemara, H. A review on prognostics and health monitoring of proton exchange membrane fuel cell. Renew. Sustain. Energy Rev. 2017, 75, 440–450. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Pisu, P. An Unscented Kalman Filter Based Approach for the Health Monitoring and Prognostics of a Polymer Electrolyte Membrane Fuel Cell. In Proceedings of the Annual Conference of the PHM Society, Minneapolis, MN, USA, 23–27 September 2012. [Google Scholar]
- Dhanushkodi, S.; Schwager, M.; Todd, D.; Merida, W. PEMFC durability: Spatially resolved Pt dissolution in a single cell. J. Electrochem. Soc. 2014, 161, F1315. [Google Scholar] [CrossRef]
- Bi, W.; Fuller, T.F. Modeling of PEM fuel cell Pt/C catalyst degradation. J. Power Sources 2008, 178, 188–196. [Google Scholar] [CrossRef]
- Polverino, P.; Pianese, C. Model-based prognostic algorithm for online RUL estimation of PEMFCs. In Proceedings of the 2016 3rd Conference on Control and Fault-Tolerant Systems (SysTol), Barcelona, Spain, 7–9 September 2016; IEEE: Piscataway Township, NJ, USA, 2016; pp. 599–604. [Google Scholar]
- Jouin, M.; Gouriveau, R.; Hissel, D.; Péra, M.C.; Zerhouni, N. Prognostics of PEM fuel cell in a particle filtering framework. Int. J. Hydrogen Energy 2014, 39, 481–494. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Bei, S. Estimation algorithm research for lithium battery SOC in electric vehicles based on adaptive unscented Kalman filter. Neural Comput. Appl. 2019, 31, 8171–8183. [Google Scholar] [CrossRef]
- Silva, R.; Gouriveau, R.; Jemei, S.; Hissel, D.; Boulon, L.; Agbossou, K.; Steiner, N.Y. Proton exchange membrane fuel cell degradation prediction based on adaptive neuro-fuzzy inference systems. Int. J. Hydrogen Energy 2014, 39, 11128–11144. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Chen, J.; Hissel, D.; Su, H. Short-term prognostics of PEM fuel cells: A comparative and improvement study. IEEE Trans. Ind. Electron. 2018, 66, 6077–6086. [Google Scholar] [CrossRef]
- Morando, S.; Jemei, S.; Gouriveau, R.; Zerhouni, N.; Hissel, D. Fuel cells prognostics using echo state network. In Proceedings of the IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; IEEE: Piscataway Township, NJ, USA, 2013; pp. 1632–1637. [Google Scholar]
- Hua, Z.; Zheng, Z.; Pahon, E.; Péra, M.C.; Gao, F. Remaining useful life prediction of PEMFC systems under dynamic operating conditions. Energy Convers. Manag. 2021, 231, 113825. [Google Scholar] [CrossRef]
- Ma, R.; Yang, T.; Breaz, E.; Li, Z.; Briois, P.; Gao, F. Data-driven proton exchange membrane fuel cell degradation predication through deep learning method. Appl. Energy 2018, 231, 102–115. [Google Scholar] [CrossRef]
- Liu, H.; Chen, J.; Hissel, D.; Su, H. Remaining useful life estimation for proton exchange membrane fuel cells using a hybrid method. Appl. Energy 2019, 237, 910–919. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, Z.; Outbib, R. Adaptive prognostic of fuel cells by implementing ensemble echo state networks in time-varying model space. IEEE Trans. Ind. Electron. 2019, 67, 379–389. [Google Scholar] [CrossRef] [Green Version]
- Ma, R.; Xie, R.; Xu, L.; Huangfu, Y.; Li, Y. A Hybrid Prognostic Method for PEMFC with Aging Parameter Prediction. IEEE Trans. Transp. Electrif. 2021, 7, 2318–2331. [Google Scholar] [CrossRef]
- Jouin, M.; Gouriveau, R.; Hissel, D.; Péra, M.C.; Zerhouni, N. Joint particle filters prognostics for proton exchange membrane fuel cell power prediction at constant current solicitation. IEEE Trans. Reliab. 2015, 65, 336–349. [Google Scholar] [CrossRef]
- Morando, S.; Jemei, S.; Hissel, D.; Gouriveau, R.; Zerhouni, N. Proton exchange membrane fuel cell ageing forecasting algorithm based on Echo State Network. Int. J. Hydrogen Energy 2017, 42, 1472–1480. [Google Scholar] [CrossRef]
- Kimotho, J.K.; Meyer, T.; Sextro, W. PEM fuel cell prognostics using particle filter with model parameter adaptation. In Proceedings of the 2014 International Conference on Prognostics and Health Management, Zhangjiajie, NJ, USA, China 24–27 August 2014; IEEE: Piscataway Township, NJ, USA, 2014; pp. 1–6. [Google Scholar]
- Deng, L.; Shen, W.; Wang, H.; Wang, S. A rest-time-based prognostic model for remaining useful life prediction of lithium-ion battery. Neural Comput. Appl. 2021, 33, 2035–2046. [Google Scholar] [CrossRef]
- Zhou, D.; Al-Durra, A.; Zhang, K.; Ravey, A.; Gao, F. Online remaining useful lifetime prediction of proton exchange membrane fuel cells using a novel robust methodology. J. Power Sources 2018, 399, 314–328. [Google Scholar] [CrossRef]
- Mao, L.; Jackson, L. IEEE 2014 Data Challenge Data. 2016. Available online: https://repository.lboro.ac.uk/articles/dataset/IEEE_2014_Data_Challenge_Data/3518141/1 (accessed on 20 October 2021).
- Liu, J.; Li, Q.; Chen, W.; Yan, Y.; Qiu, Y.; Cao, T. Remaining useful life prediction of PEMFC based on long short-term memory recurrent neural networks. Int. J. Hydrogen Energy 2019, 44, 5470–5480. [Google Scholar] [CrossRef]
- Taieb, S.B.; Bontempi, G.; Atiya, A.F.; Sorjamaa, A. A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition. Expert Syst. Appl. 2012, 39, 7067–7083. [Google Scholar] [CrossRef] [Green Version]
- Bressel, M.; Hilairet, M.; Hissel, D.; Bouamama, B.O. Remaining useful life prediction and uncertainty quantification of proton exchange membrane fuel cell under variable load. IEEE Trans. Ind. Electron. 2016, 63, 2569–2577. [Google Scholar] [CrossRef]
- Fowler, M.W.; Mann, R.F.; Amphlett, J.C.; Peppley, B.A.; Roberge, P.R. Incorporation of voltage degradation into a generalised steady state electrochemical model for a PEM fuel cell. J. Power Sources 2002, 106, 274–283. [Google Scholar] [CrossRef]
- Pan, R.; Yang, D.; Wang, Y.; Chen, Z. Performance degradation prediction of proton exchange membrane fuel cell using a hybrid prognostic approach. Int. J. Hydrogen Energy 2020, 45, 30994–31008. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- Bodenhofer, U. Genetic Algorithms: Theory and Applications. Lecture notes, Fuzzy Logic Laboratorium Linz-Hagenberg, Winter, 2004. 2003. Available online: http://www.flll.jku.at/div/teaching/Ga/notes.pdf (accessed on 20 October 2021).
- Wang, Y.; Zhang, C.; Chen, Z. An adaptive remaining energy prediction approach for lithium-ion batteries in electric vehicles. J. Power Sources 2016, 305, 80–88. [Google Scholar] [CrossRef]
- Sundermeyer, M.; Schlüter, R.; Ney, H. LSTM neural networks for language modeling. In Proceedings of the Thirteenth Annual Conference of the International Speech Communication Association, Portland, OR, USA, 9–13 September 2012. [Google Scholar]
- Siami-Namini, S.; Tavakoli, N.; Namin, A.S. The performance of LSTM and BiLSTM in forecasting time series. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; IEEE: Piscataway Township, NJ, USA, 2019; pp. 3285–3292. [Google Scholar]
Parameter | Control Range |
---|---|
Number of cells | 5 |
Active area | 100 cm2 |
Load current | 70 A (FC1)/63–77 A (FC2) |
Operating hours | 991 h (FC1)/1020 h (FC2) |
Air flow rate | 23 L/min |
Hydrogen flow rate | 4.8 L/min |
Coolant flow rate | 2 L/min |
Pressure of anode and cathode | 1.3 bar |
Stack temperature | 55 °C |
Relative humidity | 50% |
Stack | Training Data | Numbers of Parameters | |
---|---|---|---|
2 | 3 | ||
FC1 | 55% | −3677 | −4257 |
70% | −2687 | −2774 | |
80% | −1792 | −1818 | |
FC2 | 55% | −3564 | −3845 |
70% | −2347 | −2479 | |
80% | −1545 | −1622 |
Data | AEKF | LSTM | T-AEKF | T-AEKF-LSTM | |
---|---|---|---|---|---|
RMSE | 55% | 0.0181 | 0.0338 | 0.0084 | 0.0083 |
70% | 0.0152 | 0.0232 | 0.0087 | 0.0092 | |
80% | 0.0151 | 0.0188 | 0.0102 | 0.0091 | |
MAPE | 60% | 0.4673 | 0.9101 | 0.1994 | 0.1913 |
70% | 0.2792 | 0.5686 | 0.1821 | 0.2031 | |
80% | 0.4140 | 0.5214 | 0.2162 | 0.2039 |
Data | AEKF | LSTM | T-AEKF | T-AEKF-LSTM | |
---|---|---|---|---|---|
RMSE | 55% | 0.0201 | 0.0295 | 0.0161 | 0.0113 |
70% | 0.0211 | 0.0340 | 0.0169 | 0.0126 | |
80% | 0.0221 | 0.0314 | 0.0194 | 0.0107 | |
MAPE | 60% | 0.5149 | 0.7690 | 0.4104 | 0.3027 |
70% | 0.5716 | 0.8293 | 0.4244 | 0.3251 | |
80% | 0.5446 | 0.8506 | 0.5226 | 0.2640 |
Stack | Degradation Degrees | Actual RUL | AEKF | LSTM | T-AEKF | PAM-ARMA -TDNN [33] | T-AEKF -LSTM (Ours) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RUL | Error | RUL | Error | RUL | Error | RUL | Error | RUL | Error | |||
FC1 | 4.0% | 247 h | 216 h | 31 h | >446 h | - | 283 h | −36 h | 252 h | −5 h | 244 h | 3 h |
FC2 | 4.0% | 55 h | 204 h | −149 h | 207 h | −152 h | 172 h | −117 h | 156 h | −101 h | 29 h | 26 h |
5.0% | 359 h | >459 h | - | >459 h | - | 386 h | −27 h | 381 h | −22 h | 348 h | 11 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Z.; Wang, Y.; Ma, L.; Zhu, Y.; Li, Y.; Tao, J.; Tian, G. A Hybrid Prognostic Method for Proton-Exchange-Membrane Fuel Cell with Decomposition Forecasting Framework Based on AEKF and LSTM. Sensors 2023, 23, 166. https://doi.org/10.3390/s23010166
Xia Z, Wang Y, Ma L, Zhu Y, Li Y, Tao J, Tian G. A Hybrid Prognostic Method for Proton-Exchange-Membrane Fuel Cell with Decomposition Forecasting Framework Based on AEKF and LSTM. Sensors. 2023; 23(1):166. https://doi.org/10.3390/s23010166
Chicago/Turabian StyleXia, Zetao, Yining Wang, Longhua Ma, Yang Zhu, Yongjie Li, Jili Tao, and Guanzhong Tian. 2023. "A Hybrid Prognostic Method for Proton-Exchange-Membrane Fuel Cell with Decomposition Forecasting Framework Based on AEKF and LSTM" Sensors 23, no. 1: 166. https://doi.org/10.3390/s23010166
APA StyleXia, Z., Wang, Y., Ma, L., Zhu, Y., Li, Y., Tao, J., & Tian, G. (2023). A Hybrid Prognostic Method for Proton-Exchange-Membrane Fuel Cell with Decomposition Forecasting Framework Based on AEKF and LSTM. Sensors, 23(1), 166. https://doi.org/10.3390/s23010166