Quantitative Evaluation of In Vivo Corneal Biomechanical Properties after SMILE and FLEx Surgery by Acoustic Radiation Force Optical Coherence Elastography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Surgical Techniques
2.2. Pre-Operative and Post-Operative Examinations
2.3. Design of the Acoustic Radiation Force Optical Coherence Elastography System
2.4. Quantification of the Elastic Modulus
2.5. Statistical Analysis
3. Results
3.1. Central Corneal Thickness
3.2. ARF-OCE Results of Normal Cornea
3.3. ARF-OCE Results of the FLEx and SMILE Surgery
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nordan, L.T.; Slade, S.G.; Baker, R.N.; Suarez, C.; Juhasz, T.; Kurtz, R. Femtosecond laser flap creation for laser in situ keratomileusis: Six-month follow-up of initial U.S. clinical series. J. Refract. Surg. 2003, 19, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Sugar, A. Ultrafast (femtosecond) laser refractive surgery. Curr. Opin. Ophthalmol. 2002, 13, 246–249. [Google Scholar] [CrossRef]
- Sekundo, W.; Kunert, K.S.; Blum, M. Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism: Results of a 6 month prospective study. Br. J. Ophthalmol. 2011, 95, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Spiru, B.; Kling, S.; Hafezi, F.; Sekundo, W. Biomechanical Differences Between Femtosecond Lenticule Extraction (FLEx) and Small Incision Lenticule Extraction (SmILE) Tested by 2D-Extensometry in Ex Vivo Porcine Eyes. Invest. Ophthalmol. Vis. Sci. 2017, 58, 2591–2595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damgaard, I.B.; Reffat, M.; Hjortdal, J. Review of Corneal Biomechanical Properties Following LASIK and SMILE for Myopia and Myopic Astigmatism. Open Ophthalmol. J. 2018, 12, 164–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guell, J.L.; Verdaguer, P.; Mateu-Figueras, G.; Elies, D.; Gris, O.; El Husseiny, M.A.; Manero, F.; Morral, M. SMILE Procedures With Four Different Cap Thicknesses for the Correction of Myopia and Myopic Astigmatism. J. Refract. Surg. 2015, 31, 580–585. [Google Scholar] [CrossRef]
- Reinstein, D.Z.; Archer, T.J.; Randleman, J.B. Mathematical model to compare the relative tensile strength of the cornea after PRK, LASIK, and small incision lenticule extraction. J. Refract. Surg. 2013, 29, 454–460. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Hosseini-Moghaddam, S.M.; Hodge, W. Corneal biomechanical properties after SMILE versus FLEX, LASIK, LASEK, or PRK: A systematic review and meta-analysis. BMC Ophthalmol. 2019, 19, 167. [Google Scholar] [CrossRef] [Green Version]
- Jun, I.; Kang, D.S.Y.; Roberts, C.J.; Lee, H.; Jean, S.K.; Kim, E.K.; Seo, K.Y.; Kim, T.I. Comparison of Clinical and Biomechanical Outcomes of Small Incision Lenticule Extraction With 120-and 140-mu m Cap Thickness. Transl. Vis. Sci. Technol. 2021, 10, 15. [Google Scholar] [CrossRef]
- Eltony, A.M.; Shao, P.; Yun, S.-H. Measuring mechanical anisotropy of the cornea with Brillouin microscopy. Nat. Commun. 2022, 13, 1354. [Google Scholar] [CrossRef]
- Li, R.; Du, Z.; Qian, X.; Li, Y.; Martinez-Camarillo, J.-C.; Jiang, L.; Humayun, M.S.; Chen, Z.; Zhou, Q. High resolution optical coherence elastography of retina under prosthetic electrode. Quant. Imaging Med. Surg. 2021, 11, 918. [Google Scholar] [CrossRef]
- Qian, X.; Li, R.; Lu, G.; Jiang, L.; Kang, H.; Kirk Shung, K.; Humayun, M.S.; Zhou, Q. Ultrasonic elastography to assess biomechanical properties of the optic nerve head and peripapillary sclera of the eye. Ultrasonics 2021, 110, 106263. [Google Scholar] [CrossRef]
- Du, Z.; Li, R.; Qian, X.; Lu, G.; Li, Y.; He, Y.; Qu, Y.; Jiang, L.; Chen, Z.; Humayun, M.S.; et al. Quantitative confocal optical coherence elastography for evaluating biomechanics of optic nerve head using Lamb wave model. Neurophotonics 2019, 6, 041112. [Google Scholar] [CrossRef]
- Schmitt, J.M. OCT elastography: Imaging microscopic deformation and strain of tissue. Opt. Express 1998, 3, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Larin, K.V.; Sampson, D.D. Optical coherence elastography—OCT at work in tissue biomechanics [Invited]. Biomed. Opt. Express 2017, 8, 1172–1202. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.L.; Aglyamov, S.R.; Li, J.S.; Singh, M.; Wang, S.; Vantipalli, S.; Wu, C.; Liu, C.H.; Twa, M.D.; Larin, K.V. Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh-Lamb equation. J. Biomed. Opt. 2015, 20, 20501. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Ma, T.; He, Y.; Zhu, J.; Dai, C.; Yu, M.; Huang, S.; Lu, F.; Shung, K.K.; Zhou, Q.; et al. Acoustic Radiation Force Optical Coherence Elastography of Corneal Tissue. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 288–294. [Google Scholar] [CrossRef] [Green Version]
- Twa, M.D.; Li, J.; Vantipalli, S.; Singh, M.; Aglyamov, S.; Emelianov, S.; Larin, K.V. Spatial characterization of corneal biomechanical properties with optical coherence elastography after UV cross-linking. Biomed. Opt. Express 2014, 5, 1419–1427. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Li, J.; Han, Z.; Wu, C.; Aglyamov, S.R.; Twa, M.D.; Larin, K.V. Investigating Elastic Anisotropy of the Porcine Cornea as a Function of Intraocular Pressure With Optical Coherence Elastography. J. Refract. Surg. 2016, 32, 562–567. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Han, Z.; Li, J.; Vantipalli, S.; Aglyamov, S.R.; Twa, M.D.; Larin, K.V. Quantifying the effects of hydration on corneal stiffness with noncontact optical coherence elastography. J. Cataract Refract. Surg. 2018, 44, 1023–1031. [Google Scholar] [CrossRef]
- Wang, S.; Larin, K.V. Noncontact depth-resolved micro-scale optical coherence elastography of the cornea. Biomed. Opt. Express 2014, 5, 3807–3821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Stefano, V.S.; Ford, M.R.; Seven, I.; Dupps, W.J., Jr. Live human assessment of depth-dependent corneal displacements with swept-source optical coherence elastography. PLoS ONE 2018, 13, e0209480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramier, A.; Eltony, A.M.; Chen, Y.; Clouser, F.; Birkenfeld, J.S.; Watts, A.; Yun, S.H. In vivo measurement of shear modulus of the human cornea using optical coherence elastography. Sci. Rep. 2020, 10, 17366. [Google Scholar] [CrossRef]
- Lan, G.; Gu, B.; Larin, K.V.; Twa, M.D. Clinical Corneal Optical Coherence Elastography Measurement Precision: Effect of Heartbeat and Respiration. Transl. Vis. Sci. Technol. 2020, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.Z.; Wang, Y.B.; Xu, Y.Y.; Zhang, Y.J.; Yang, H.W.; Han, X.; Zhu, Y.R.; Zhang, Y.B.; Huang, G.F. Quantification for biomechanical properties of human cornea by using acoustic radiation force optical coherence elastography. J. Mod. Opt. 2022, 69, 150–159. [Google Scholar] [CrossRef]
- Han, X.; Zhang, Y.B.; Zhu, Y.R.; Zhao, Y.Z.; Yang, H.W.; Liu, G.; Ai, S.Z.; Wang, Y.D.; Xie, C.F.; Shi, J.L.; et al. Quantification of biomechanical properties of human corneal scar using acoustic radiation force optical coherence elastography. Exp. Biol. Med. 2022, 247, 462–469. [Google Scholar] [CrossRef]
- Zhu, J.; He, X.; Chen, Z. Acoustic radiation force optical coherence elastography for elasticity assessment of soft tissues. Appl. Spectrosc. Rev. 2019, 54, 457–481. [Google Scholar] [CrossRef]
- Nguyen, T.M.; Couade, M.; Bercoff, J.; Tanter, M. Assessment of Viscous and Elastic Properties of Sub-Wavelength Layered Soft Tissues Using Shear Wave Spectroscopy: Theoretical Framework and In Vitro Experimental Validation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2011, 58, 2305–2315. [Google Scholar] [CrossRef]
- Zhou, B.; Sit, A.J.; Zhang, X. Noninvasive measurement of wave speed of porcine cornea in ex vivo porcine eyes for various intraocular pressures. Ultrasonics 2017, 81, 86–92. [Google Scholar] [CrossRef]
- Li, Y.; Moon, S.; Chen, J.J.; Zhu, Z.; Chen, Z. Ultrahigh-sensitive optical coherence elastography. Light Sci. Appl. 2020, 9, 58. [Google Scholar] [CrossRef]
- Li, R.; Qian, X.; Gong, C.; Zhang, J.; Liu, Y.; Xu, B.; Humayun, M.S.; Zhou, Q. Simultaneous Assessment of the Whole Eye Biomechanics Using Ultrasonic Elastography. IEEE Trans. Biomed. Eng. 2022, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sinha Roy, A.; Dupps, W.J., Jr.; Roberts, C.J. Comparison of biomechanical effects of small-incision lenticule extraction and laser in situ keratomileusis: Finite-element analysis. J. Cataract Refract. Surg. 2014, 40, 971–980. [Google Scholar] [CrossRef]
- Seven, I.; Vahdati, A.; Pedersen, I.B.; Vestergaard, A.; Hjortdal, J.; Roberts, C.J.; Dupps, W.J., Jr. Contralateral Eye Comparison of SMILE and Flap-Based Corneal Refractive Surgery: Computational Analysis of Biomechanical Impact. J. Refract. Surg. 2017, 33, 444–453. [Google Scholar] [CrossRef]
- Winkler, M.; Chai, D.; Kriling, S.; Nien, C.J.; Brown, D.J.; Jester, B.; Juhasz, T.; Jester, J.V. Nonlinear optical macroscopic assessment of 3-D corneal collagen organization and axial biomechanics. Invest. Ophthalmol. Vis. Sci. 2011, 52, 8818–8827. [Google Scholar] [CrossRef]
- Damgaard, I.B.; Ivarsen, A.; Hjortdal, J. Refractive Correction and Biomechanical Strength Following SMILE With a 110- or 160-mum Cap Thickness, Evaluated Ex Vivo by Inflation Test. Invest. Ophthalmol. Vis. Sci. 2018, 59, 1836–1843. [Google Scholar] [CrossRef] [Green Version]
- Sinha Roy, A.; Dupps, W.; Roberts, C. Comparison of Biomechanical Effects of Small Incision Lenticule Extraction (SMILE) and Laser in situ Keratomileusis (LASIK): A Finite Element Analysis Study. Invest. Ophthalmol. Vis. Sci. 2013, 54, 1633. [Google Scholar]
- Randleman, J.B.; Su, J.P.; Scarcelli, G. Biomechanical Changes After LASIK Flap Creation Combined With Rapid Cross-Linking Measured With Brillouin Microscopy. J. Refract. Surg. 2017, 33, 408–414. [Google Scholar] [CrossRef] [Green Version]
- Asroui, L.; Zhang, H.; Scarcelli, G.; Randleman, J.B. Comparison of Brillouin Shifts Between Keratoconus, Post-LASIK, and Normal Control Corneas. Investig. Ophthalmol. Vis. Sci. 2022, 63, 2398-A0201. [Google Scholar]
- Randleman, J.B.; Scarcelli, G. Biomechanical changes associated with LASIK flap creation and rapid cross-linking measured with Brillouin microscopy. Investig. Ophthalmol. Vis. Sci. 2017, 58, 5267. [Google Scholar]
- Scarcelli, G.; Pineda, R.; Yun, S.H. Brillouin optical microscopy for corneal biomechanics. Invest. Ophthalmol. Vis. Sci. 2012, 53, 185–190. [Google Scholar] [CrossRef]
- Roy, A.S.; Dupps, W.J. Patient-Specific Computational Modeling of Keratoconus Progression and Differential Responses to Collagen Cross-linking. Invest. Ophthalmol. Vis. Sci. 2011, 52, 9174–9187. [Google Scholar] [CrossRef]
- Gefen, A.; Shalom, R.; Elad, D.; Mandel, Y. Biomechanical analysis of the keratoconic cornea. J. Mech. Behav. Biomed. 2009, 2, 224–236. [Google Scholar] [CrossRef]
- Spiru, B.; Kling, S.; Hafezi, F.; Sekundo, W. Biomechanical Properties of Human Cornea Tested by Two-Dimensional Extensiometry Ex Vivo in Fellow Eyes: Femtosecond Laser-Assisted LASIK Versus SMILE. J. Refract. Surg. 2018, 34, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.G.; Son, T.; Crutison, J.; Guaiquil, V.; Lin, S.; Nammari, L.; Klatt, D.; Yao, X.; Rosenblatt, M.I.; Royston, T.J. Optical coherence elastography for assessing the influence of intraocular pressure on elastic wave dispersion in the cornea. J. Mech. Behav. Biomed. Mater. 2022, 128, 105100. [Google Scholar] [CrossRef] [PubMed]
- Bryant, M.R.; Szerenyi, K.; Schmotzer, H.; Mcdonnell, P.J. Corneal Tensile-Strength in Fully Healed Radial Keratotomy Wounds. Invest. Ophthalmol. Vis. Sci. 1994, 35, 3022–3031. [Google Scholar]
- Elsheikh, A.; Alhasso, D.; Rama, P. Biomechanical properties of human and porcine corneas. Exp. Eye Res. 2008, 86, 783–790. [Google Scholar] [CrossRef]
- Pitre, J.J.; Kirby, M.A.; Li, D.S.; Shen, T.T.; Wang, R.K.; O’Donnell, M.; Pelivanov, I. Nearly-incompressible transverse isotropy (NITI) of cornea elasticity: Model and experiments with acoustic micro-tapping OCE. Sci. Rep. 2020, 10, 12983. [Google Scholar] [CrossRef]
- Bohac, M.; Koncarevic, M.; Pasalic, A.; Biscevic, A.; Merlak, M.; Gabric, N.; Patel, S. Incidence and Clinical Characteristics of Post LASIK Ectasia: A Review of over 30,000 LASIK Cases. Semin. Ophthalmol. 2018, 33, 869–877. [Google Scholar] [CrossRef]
Data (Mean ± SD) | SMILE (n = 6) | FLEX (n = 6) |
---|---|---|
CCT (Pre-), µm | 344 ± 4.6 | 347 ± 10 |
CCT (Post-), µm | 238 ± 7.1 | 238 ± 9.4 |
p-value | 4.4985 × 10−9 | 1.3300 × 10−9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhu, Y.; Wang, Y.; Yang, H.; He, X.; Alvarez-Arenas, T.G.; Li, Y.; Huang, G. Quantitative Evaluation of In Vivo Corneal Biomechanical Properties after SMILE and FLEx Surgery by Acoustic Radiation Force Optical Coherence Elastography. Sensors 2023, 23, 181. https://doi.org/10.3390/s23010181
Zhao Y, Zhu Y, Wang Y, Yang H, He X, Alvarez-Arenas TG, Li Y, Huang G. Quantitative Evaluation of In Vivo Corneal Biomechanical Properties after SMILE and FLEx Surgery by Acoustic Radiation Force Optical Coherence Elastography. Sensors. 2023; 23(1):181. https://doi.org/10.3390/s23010181
Chicago/Turabian StyleZhao, Yanzhi, Yirui Zhu, Yongbo Wang, Hongwei Yang, Xingdao He, Tomas Gomez Alvarez-Arenas, Yingjie Li, and Guofu Huang. 2023. "Quantitative Evaluation of In Vivo Corneal Biomechanical Properties after SMILE and FLEx Surgery by Acoustic Radiation Force Optical Coherence Elastography" Sensors 23, no. 1: 181. https://doi.org/10.3390/s23010181
APA StyleZhao, Y., Zhu, Y., Wang, Y., Yang, H., He, X., Alvarez-Arenas, T. G., Li, Y., & Huang, G. (2023). Quantitative Evaluation of In Vivo Corneal Biomechanical Properties after SMILE and FLEx Surgery by Acoustic Radiation Force Optical Coherence Elastography. Sensors, 23(1), 181. https://doi.org/10.3390/s23010181