Magnetomechanical Properties of Fe-Si-B and Fe-Co-Si-B Metallic Glasses by Various Annealing Temperatures for Actuation Applications
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, J.; Das, J.; Xing, Z.; Li, J.; Viehland, D. Comparison of noise floor and sensitivity for different magnetoelectric laminates. J. Appl. Phys. 2010, 108, 084509. [Google Scholar] [CrossRef]
- Squire, P.T. Magnetomechanical measurements of magnetically soft amorphous materials. Meas. Sci. Technol. 1994, 5, 67–81. [Google Scholar] [CrossRef]
- Marín, P.; Marcos, M.; Hernando, A. High magnetomechanical coupling on magnetic microwire for sensors with biological applications. Appl. Phys. Lett. 2010, 96, 262512. [Google Scholar] [CrossRef]
- Dong, C.; Wang, X.; Lin, H.; Gao, Y.; Sun, N.; He, Y.; Zaeimbashi, M. A Portable Very Low Frequency (VLF) Communication System Based on Acoustically Actuated Magnetoelectric Antennas. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 398–402. [Google Scholar] [CrossRef]
- Narita, F.; Fox, M. A Review on Piezoelectric, Magnetostrictive, and Magnetoelectric Materials and Device Technologies for Energy Harvesting Applications. Adv. Eng. Mater. 2017, 20, 1700743. [Google Scholar] [CrossRef]
- Cui, Y.; Wu, M.; Song, X.; Huang, Y.-P.; Jia, Q.; Tao, Y.-F.; Wang, C. Research progress of small low-frequency transmitting antenna. Acta Phys. Sin. 2020, 69, 208401. [Google Scholar] [CrossRef]
- Ding, H. DARPA’s robotic antenna project could revolutionize military communications. Modern Military Affairs. 2017, 4, 71. (In Chinese) [Google Scholar]
- Skrivervik, A.K.; Zurcher, J.-F.; Staub, O.; Mosig, J.R. PCS antenna design: The challenge of miniaturization. IEEE Antennas Propag. Mag. 2001, 43, 12–27. [Google Scholar] [CrossRef]
- Kramer, B.A.; Chen, C.-C.; Lee, M.; Volakis, J.L. Fundamental Limits and Design Guidelines for Miniaturizing Ultra-Wideband Antennas. IEEE Antennas Propag. Mag. 2009, 51, 57–69. [Google Scholar] [CrossRef]
- Gianvittorio, J.P.; Rahmat-Samii, Y. Fractal antennas: A novel antenna miniaturization technique, and applications. IEEE Antennas Propag. Mag. 2002, 44, 20–36. [Google Scholar] [CrossRef]
- Mosallaei, H.; Sarabandi, K. Antenna Miniaturization and Bandwidth Enhancement Using a Reactive Impedance Substrate. IEEE Trans. Antennas Propag. 2004, 52, 2403–2414. [Google Scholar] [CrossRef]
- Nan, T.; Lin, H.; Gao, Y.; Matyushov, A.; Yu, G.; Chen, H.; Sun, N.; Wei, S.; Wang, Z.; Li, M.; et al. Acoustically actuated ultra-compact NEMS magnetoelectric antennas. Nat. Commun. 2017, 36, 296. [Google Scholar] [CrossRef] [PubMed]
- Kabacoff, L.T. Thermal, magnetic, and magnetomechanical properties of Metglas 2605 S2 and S3. J. Appl. Phys. 1982, 53, 8098–8100. [Google Scholar] [CrossRef]
- Savage, H.; Clark, A.; Powers, J. Magnetomechanical coupling and ΔE effect in highly magnetostrictive rare earth—Fe2 compounds. IEEE Trans. Magn. 1978, 11, 1355–1357. [Google Scholar] [CrossRef]
- Duwez, P.; Willens, R.H.; Klement, W. Continuous Series of Metastable Solid Solutions in Silver-Copper Alloys. J. Appl. Phys. 1960, 31, 1136–1137. [Google Scholar] [CrossRef]
- Yao, K.F. Research progress and application prospect of Fe-based soft magnetic amorphous/nanocrystalline alloys. Acta Phys. Sin. 2018, 67, 016101. [Google Scholar]
- Arai, K.; Tsuya, N.; Yamada, M.; Masumoto, T. Giant ΔE effect and magnetomechanical coupling factor in amorphous Fe80P13C7 ribbons. IEEE Trans. Magn. 1976, 12, 936–938. [Google Scholar] [CrossRef]
- Brouha, M.; van der Borst, J. The effect of annealing conditions on the magneto-mechanical properties of Fe-B-Si amorphous ribbons. J. Appl. Phys. 1979, 50, 7594. [Google Scholar] [CrossRef]
- Modzelewski, C.; Savage, H.; Kabacoff, L.; Clark, A. Magnetomechanical coupling and permeability in transversely annealed metglas 2605 alloys. IEEE Trans. Magn. 1981, 17, 2837–2839. [Google Scholar] [CrossRef]
- Beach, R.S.; Berkowitz, A.E. Sensitive field- and frequency-dependent impedance spectra of amorphous FeCoSiB wire and ribbon (invited). J. Appl. Phys. 1994, 76, 6209–6213. [Google Scholar] [CrossRef]
- Mohri, K.; Kohsawa, T.; Kawashima, K.; Yoshida, H.; Panina, L.V. Magneto-inductive effect (MI effect) in amorphous wires. IEEE Trans. Magn. 1992, 28, 3150–3152. [Google Scholar] [CrossRef]
- Leung, C.M.; Li, J.; Viehland, D.; Zhuang, X. A review on applications of magnetoelectric composites: From heterostructural uncooled magnetic sensors, energy harvesters to highly efficient power converters. J. Phys. D Appl. Phys. 2018, 51, 263002. [Google Scholar] [CrossRef]
- Dong, S.; Zhai, J.; Xing, Z.; Li, J.; Viehland, D. Giant magnetoelectric effect (under a dc magnetic bias of 2Oe) in laminate composites of FeBSiC alloy ribbons and Pb(Zn1/3,Nb2/3)O3–7%PbTiO3 fibers. Appl. Phys. Lett. 2007, 91, 022915. [Google Scholar] [CrossRef]
- Ryu, J.; Carazo, A.V.; Uchino, K.; Kim, H.-E. Magnetoelectric Properties in Piezoelectric and Magnetostrictive Laminate Composites. Jpn. J. Appl. Phys. 2001, 40, 4948–4951. [Google Scholar] [CrossRef]
- Zhuang, X.; Leung, C.-M.; Li, J.; Viehland, D. Estimation of the Intrinsic Power Efficiency in Magnetoelectric Laminates Using Temperature Measurements. Sensors 2020, 20, 3332. [Google Scholar] [CrossRef]
- Ueda, M.; Wakatsuki, N. Investigation of internal loss and power transmission characteristic of width shear vibration piezoelectric transformer. Jpn. J. Appl. Phys. 1994, 33, 2953–2956. [Google Scholar] [CrossRef]
- Zheng, J.; Takahashi, S.; Yoshikawa, S.; Uchino, K. Heat generation in multilayer piezoelelctric actuator. J. Am. Ceram. Soc. 1996, 79, 3193–3198. [Google Scholar] [CrossRef]
- Shekhani, H.; Uchino, K. Characterization of mechanical loss in piezoelectric materials using temperature and vibration measurements. J. Am. Ceram. Soc. 2014, 97, 2810–2814. [Google Scholar] [CrossRef]
- Gutiérrez, J.; Barandiarán, J.M.; Nielsen, O.V. Magnetoelastic Properties of Some Fe-Rich Fe-Co-Si-B Metallic Glasses. Phys. Status Solidi 1989, 111, 279–283. [Google Scholar] [CrossRef]
- Hernando, A.; Madurga, V.; Barandiarán, J.M.; Liniers, M. Anomalous eddy currents in magnetostrictive amorphous ferromagnets: A large contribution from magnetoelastic effects. J. Magn. Magn. Mater. 1982, 28, 109–116. [Google Scholar] [CrossRef]
- Stoyanov, P.G.; Grimes, C.A. A remote query magnetostrictive viscosity sensor. Sens. Actuators A Phys. 2000, 80, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Gómez, C.; Marín, P.; Hernando, A. Bias free magnetomechanical coupling on magnetic microwires for sensing applications. Appl. Phys. Lett. 2013, 103, 142414. [Google Scholar] [CrossRef]
- Leung, C.M.; Zhuang, X.; Xu, J.; Li, J.; Zhang, J.; Srinivasan, G.; Viehland, D. Enhanced tunability of magneto-impedance and magneto-capacitance in annealed Metglas/PZT magnetoelectric composites. AIP Adv. 2018, 8, 055803. [Google Scholar] [CrossRef]
- Kaczkowski, Z. Magnetomechanical properties of rapidly quenched materials. Mater. Sci. Eng. A 1997, 226–228, 614–625. [Google Scholar] [CrossRef]
- Kaczkowski, Z.; Vlasák, G.; Švec, P.; Duhaj, P.; Ruuskanen, P.; Barandiarán, J.M.; Gutiérrez, J.; Minguez, P. Influence of heat-treatment on magnetic, magnetostrictive and piezomagnetic properties and structure of Fe64Ni10Nb3Cu1Si13B9 metallic glass. Mater. Sci. Eng. A 2004, 375–377, 1065–1068. [Google Scholar] [CrossRef]
- Zhukova, V.; Ipatov, M.; Corte-Leon, P.; Blanco, J.M.; Zanaeva, E.; Bazlov, A.I.; Jiang, J.; Louzguine-Luzgin, D.V.; Olivera, J.; Zhukov, A. Excellent magnetic properties of (Fe0.7Co0.3)83.7Si4B8P3.6Cu0.7 ribbons and microwires. Intermetallics 2020, 117, 106660. [Google Scholar] [CrossRef]
- Sagasti, A.; Gutiérrez, J.; Lasheras, A.; Barandiarán, J.M. Size Dependence of the Magnetoelastic Properties of Metallic Glasses for Actuation Applications. Sensors 2019, 19, 4296. [Google Scholar] [CrossRef]
- Saiz, P.G.; Gandía, D.; Lasheras, A.; Sagasti, A.; Quintana, I.; Fernández-Gubieda, M.L.; Gutiérrez, J.; Arriortua, M.; Lopes, A.C. Enhanced mass sensitivity in novel magnetoelastic resonators for advanced detection systems. Sens. Actuators B Chem. 2019, 296, 126612. [Google Scholar] [CrossRef]
- Zhuang, X.; Leung, C.M.; Li, J.; Srinivasan, G.; Viehland, D. Power Conversion Efficiency and Equivalent Input Loss Factor in Magnetoelectric Gyrators. IEEE Trans. Ind. Electron. 2019, 66, 2499–2505. [Google Scholar] [CrossRef]
- Morito, N.; Suzuki, T.; Maeda, C.; Yamashita, T.; Kitano, Y. Magnetic properties and surface crystallization induced by selective oxidation in Fe-B-Si amorphous alloy. J. Mater. Sci. 1990, 25, 5166–5172. [Google Scholar] [CrossRef]
- Liu, C.; Inoue, A.; Kong, F.L.; Zanaeva, E.; Bazlov, A.; Churyumov, A.; Zhu, S.L.; Al-Marzouki, F.; Shull, R.D. Fe-B-Si-C-Cu amorphous and nanocrystalline alloys with ultrahigh hardness and enhanced soft magnetic properties. J. Non-Cryst. Solids 2021, 554, 120606. [Google Scholar] [CrossRef]
- Makino, A.; Kubota, T.; Chang, C.; Makabe, M.; Inoue, A. FeSiBP Bulk Metallic Glasses with Unusual Combination of High Magnetization and High Glass-Forming Ability. Mater. Trans. 2007, 48, 3024–3027. [Google Scholar] [CrossRef]
- Herzer, G.; Hilzinger, H.R. Surface crystallization and magnetic properties of iron-based metallic glasses. Phys. Scr. 1989, 39, 639–641. [Google Scholar] [CrossRef]
- Xu, J.; Leung, C.; Zhuang, X.; Li, J.; Bhardwaj, S.; Volakis, J.; Viehland, D. A Low Frequency Mechanical Transmitter Based on Magnetoelectric Heterostructures Operated at Their Resonance Frequency. Sensors 2019, 19, 853. [Google Scholar] [CrossRef]
- Nan, C.W.; Bichurin, M.I.; Dong, S.; Viehland, D.; Srinivasan, G. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 2008, 103, 031101. [Google Scholar] [CrossRef]
Amorphous Alloy Composition | Dimension (mm) | Coupling Factor kmax (%) | Annealing Temperature, Time T (°C), t (min) | Magnetic Bias Hdc (A/m) |
---|---|---|---|---|
Fe73Si11B13Nb3 (wire) [3] | 3.9 (length), 0.1 (diameter) | 43 | 345, 120 | 50 |
Fe80P13C7 (ribbon) [17] | 60 × 2 × 0.03 | 53 | 350, 20 | 398 |
Fe80B15Si5 (ribbon) [18] | 50 × 1 × 0.03 | 86 | 350, 2 | 60 |
Fe67Co18B14Si (ribbon) [19] | 76 (length), 1.6 (width) | 71 | 360–375, 10 | 835 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Zhang, X.; Wu, S.; Zhuang, X.; Yan, B.; Zhu, W.; Dolabdjian, C.; Fang, G. Magnetomechanical Properties of Fe-Si-B and Fe-Co-Si-B Metallic Glasses by Various Annealing Temperatures for Actuation Applications. Sensors 2023, 23, 299. https://doi.org/10.3390/s23010299
Sun Y, Zhang X, Wu S, Zhuang X, Yan B, Zhu W, Dolabdjian C, Fang G. Magnetomechanical Properties of Fe-Si-B and Fe-Co-Si-B Metallic Glasses by Various Annealing Temperatures for Actuation Applications. Sensors. 2023; 23(1):299. https://doi.org/10.3390/s23010299
Chicago/Turabian StyleSun, Yu, Xu Zhang, Sheng Wu, Xin Zhuang, Bin Yan, Wanhua Zhu, Christophe Dolabdjian, and Guangyou Fang. 2023. "Magnetomechanical Properties of Fe-Si-B and Fe-Co-Si-B Metallic Glasses by Various Annealing Temperatures for Actuation Applications" Sensors 23, no. 1: 299. https://doi.org/10.3390/s23010299
APA StyleSun, Y., Zhang, X., Wu, S., Zhuang, X., Yan, B., Zhu, W., Dolabdjian, C., & Fang, G. (2023). Magnetomechanical Properties of Fe-Si-B and Fe-Co-Si-B Metallic Glasses by Various Annealing Temperatures for Actuation Applications. Sensors, 23(1), 299. https://doi.org/10.3390/s23010299