Single-Pixel Background Modeling Algorithm for Strong Sky Scenes Based on Local Region Spatial Bases
Abstract
:1. Introduction
- It is a background suppression algorithm based on a single frame. The background value of a single pixel is determined by the base of the neighborhood background space. Therefore, the background estimation of an image can be realized by using a single-frame image.
- Good robust performance can be achieved when the dim-small target with different characteristics. In the SPB algorithm, as the neighborhood background fluctuates, the weight coefficient of the background base for linear combination will be adjusted instead of adopting a global function with fixed parameters. Therefore, the algorithm can adapt to the fluctuation of the background and the change of SNR, velocity, and trajectory of the target.
- Residual noise has a high degree of white noise. Although the characteristics of each region of the image are different, the residual noise of the difference images has evident white noise characteristics, including equal distribution and spectrum fluctuation around the expected value.
- Good effect can be stably obtained for strong sky scenes under the condition of extremely low SNR (SNR < 1.5 dB). In the case of extremely low SNR, in terms of energy, there is almost no difference between the target gray value and that of the neighborhood; in terms of scale, there is almost no difference between the target scale and the noise scale. However, for these scenes, the SPB algorithm can well separate the background and the target, and the target can be significantly enhanced.
2. Related Works
3. SPB Algorithm
3.1. Image Characteristic Analysis
3.2. SPB Background Model Modeling
3.2.1. Model Analysis
3.2.2. Background Estimation
Algorithm 1 The pseudo code of SPB algorithm |
Input: Original video frame images . Output: Background images and difference images . For i0 = 1:num//num is the total number of frames of the video. 1. Read in the i0th frame image I, and get its size m and n. 2. Sliding the window W on the image I pixel by pixel to intercept the local region B. 3. B is divided into (k + 1) local blocks , . 4. The low-rank background of local block is calculated by using the Equation (10). 5. Find the eigenvector of the background matrix . 6. The optimal weight coefficient is calculated according to the Equation (15). 7. The optimal background value of the central pixel O is estimated out by using the Equation (11). 8. Obtain the difference image: . End for 9. Output , . |
4. Experiments
4.1. Experimental Environment
4.2. Quality Estimate
4.2.1. Robustness to the Targets with Different Characteristics
4.2.2. Analysis of Residual Noise Characteristics
4.2.3. Visual Comparison with Other Algorithms
4.3. Quantitative Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sobral, A.; Vacavant, A. A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Comput. Vis. Image Underst. 2014, 122, 4–21. [Google Scholar] [CrossRef]
- Goyal, K.; Singhai, J. Review of background subtraction methods using Gaussian mixture model for video surveillance systems. Artif. Intell. Rev. 2017, 50, 241–259. [Google Scholar] [CrossRef]
- Bai, X.; Zhou, F. Infrared small target enhancement and detection based on modified top-hat transformations. Comput. Electr. Eng. 2010, 36, 1193–1201. [Google Scholar] [CrossRef]
- Garcia-Garcia, B.; Bouwmans, T.; Silva, A.J.R. Background subtraction in real applications: Challenges, current models and future directions. Comput. Sci. Rev. 2019, 35, 100204. [Google Scholar] [CrossRef]
- Villar, S.A.; Acosta, G.G. Median Filtering: A New Insight. J. Math. Imaging Vis. 2016, 58, 130–146. [Google Scholar] [CrossRef]
- Candès, E.J.; Li, X.; Ma, Y.; Wright, J. Robust principal component analysis? J. ACM 2011, 58, 1–37. [Google Scholar] [CrossRef]
- Bouwmans, T.; Javed, S.; Zhang, H.; Lin, Z.; Otazo, R. On the Applications of Robust PCA in Image and Video Processing. Proc. IEEE 2018, 106, 1427–1457. [Google Scholar] [CrossRef] [Green Version]
- Vaswani, N.; Bouwmans, T.; Javed, S.; Narayanamurthy, P. Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace Recovery. IEEE Signal Process. Mag. 2018, 35, 32–55. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Qiu, C.; Vaswani, N. An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences From Their Sum. IEEE Trans. Signal Process. 2014, 62, 4284–4297. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Meng, D.; Yang, Y.; Wang, Y.; Zhou, X.; Hauptmann, A.G. Infrared Patch-Image Model for Small Target Detection in a Single Image. IEEE Trans. Image Process. 2013, 22, 4996–5009. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, Z. Infrared Small Target Detection Based on Partial Sum of the Tensor Nuclear Norm. Remote Sens. 2019, 11, 382. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Zhao, Y.; Qin, H.; Yin, S.; Liu, G.; Zhao, D.; Yan, X. Rong Infrared dim and small target detection algorithm based on multi-scale anisotropic diffusion equation. Acta Photon-Sin. 2015, 44, 0910002. [Google Scholar] [CrossRef]
- Bae, T.-W.; Sohng, K.-I. Small Target Detection Using Bilateral Filter Based on Edge Component. J. Infrared Millim. Terahertz Waves 2010, 31, 735–743. [Google Scholar] [CrossRef]
- Bae, T.-W.; Kim, Y.-C.; Ahn, S.-H.; Sohng, K.-I. An Efficient Two-Dimensional Least Mean Square (TDLMS) Based on Block Statistics for Small Target Detection. J. Infrared Millim. Terahertz Waves 2009, 30, 1092–1101. [Google Scholar] [CrossRef]
- Barnich, O.; Van Droogenbroeck, M. ViBE: A powerful random technique to estimate the background in video sequences. In Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, 19–24 April 2009; pp. 945–948. [Google Scholar] [CrossRef] [Green Version]
- Barnich, O.; Van Droogenbroeck, M. ViBe: A Universal Background Subtraction Algorithm for Video Sequences. IEEE Trans. Image Process. 2010, 20, 1709–1724. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, M.; Tiefenbacher, P.; Rigoll, G. Background segmentation with feedback: The pixel-based adaptive segmenter. In Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, RI, USA, 16–21 June 2012; pp. 38–43. [Google Scholar] [CrossRef] [Green Version]
- Van Droogenbroeck, M.; Paquot, O. Background subtraction: Experiments and improvements for ViBe. In Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, RI, USA, 16–21 June 2012; pp. 32–37. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Huang, X.; Zheng, Y.; Shen, L.; Bai, S. Infrared dim and small target detecting and tracking method inspired by Human Visual System. Infrared Phys. Technol. 2014, 62, 100–109. [Google Scholar] [CrossRef]
- Singh, M.; Mandal, M.K.; Basu, A. Gaussian and Laplacian of Gaussian weighting functions for robust feature based tracking. Pattern Recognit. Lett. 2005, 26, 1995–2005. [Google Scholar] [CrossRef]
- Han, J.; Liang, K.; Zhou, B.; Zhu, X.; Zhao, J.; Zhao, L. Infrared Small Target Detection Utilizing the Multiscale Relative Local Contrast Measure. IEEE Geosci. Remote Sens. Lett. 2018, 15, 612–616. [Google Scholar] [CrossRef]
- Liu, D.; Li, Z.; Liu, B.; Chen, W.; Liu, T.; Cao, L. Infrared small target detection in heavy sky scene clutter based on sparse representation. Infrared Phys. Technol. 2017, 85, 13–31. [Google Scholar] [CrossRef]
- Wan, M.; Gu, G.; Qian, W.; Ren, K.; Chen, Q. Robust infrared small target detection via non-negativity constraint-based sparse representation. Appl. Opt. 2016, 55, 7604–7612. [Google Scholar] [CrossRef]
- Li, Z.-Z.; Chen, J.; Hou, Q.; Fu, H.-X.; Dai, Z.; Jin, G.; Li, R.-Z.; Liu, C.-J. Sparse Representation for Infrared Dim Target Detection via a Discriminative Over-Complete Dictionary Learned Online. Sensors 2014, 14, 9451–9470. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Feng, J.; Chen, Y.; Liu, W.; Lin, Z.; Yan, S. Tensor robust principal component analysis: Exact recovery of corrupted low-rank tensors via convex optimization. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 5249–5257. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Wu, Y.; Song, Y.; Guo, J. Non-negative infrared patch-image model: Robust target-background separation via partial sum minimization of singular values. Infrared Phys. Technol. 2017, 81, 182–194. [Google Scholar] [CrossRef]
- Guo, J.; Wu, Y.; Dai, Y. Small target detection based on reweighted infrared patch-image model. IET Image Process. 2018, 12, 70–79. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, Y. Reweighted Infrared Patch-Tensor Model With Both Nonlocal and Local Priors for Single-Frame Small Target Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3752–3767. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaran, V.; Sanghavi, S.; Parrilo, P.; Willsky, A.S. Rank-Sparsity Incoherence for Matrix Decomposition. SIAM J. Optim. 2011, 21, 572–596. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, R.; Su, Z. Linearized alternating direction method with adaptive penalty for low rank representation. arXiv 2011, arXiv:11090367. Available online: https://arxiv.org/pdf/1109.0367.pdf (accessed on 20 December 2020).
- Yuan, X.; Yang, J. Sparse and low-rank matrix decomposition via alternating direction method. Pac. J. Optim. 2009, 9, 11. Available online: http://www.optimization-online.org/DB_HTML/2009/11/2447.html (accessed on 15 October 2019).
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Cai, J.; Candès, E.J.; Shen, Z. A Singular Value Thresholding Algorithm for Matrix Completion. SIAM J. Optim. 2010, 20, 1956–1982. [Google Scholar] [CrossRef]
- Rodriguez, P.; Wohlberg, B. Fast principal component pursuit via alternating minimization. In Proceedings of the 2013 IEEE International Conference on Image Processing, Melbourne, Australia, 15–18 September 2013; pp. 69–73. [Google Scholar] [CrossRef]
- Sobral, A.; Javed, S.; Jung, S.K.; Bouwmans, T.; Zahzah, E.-H. Online stochastic tensor decomposition for background subtraction in multispectral video sequences. In Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), Santiago, Chile, 7–13 December 2015; pp. 946–953. [Google Scholar] [CrossRef]
- Dan, B.; Li, M.; Tang, T.; Qi, X.; Zhu, Z.; Ouyang, Y. Spatial–Temporal Stochastic Resonance Model for Dim-Small Target Detection. IEEE Geosci. Remote Sens. Lett. 2022, 19, 7507805. [Google Scholar] [CrossRef]
Scales | 247 | 201 | 101 | 91 | 81 | 71 | 61 | 51 | 41 | 31 |
SF | 0.4481 | 0.4788 | 0.4919 | 0.4903 | 0.4893 | 0.4888 | 0.4888 | 0.4893 | 0.4902 | 0.4921 |
Scales | 21 | 19 | 17 | 15 | 13 | 11 | 9 | 7 | 5 | |
SF | 0.4947 | 0.4952 | 0.4956 | 0.4959 | 0.4962 | 0.4965 | 0.4965 | 0.4967 | 0.4965 |
Algorithms | Parameters |
---|---|
SPB | Local region size: , local block size: , . Here, a is the target scale. |
PCP | , |
FPCP | , lambdaFactor = 1.0; initial rank is r = 1, rankThreshold = 0.01 |
OSTD | , |
IPI | Patch size: , |
PSTNN | Patch size: , sliding step:40, |
Scenes | Frames | Sizes | (dB) | Velocities (Pixels/Frame) | Trajectories | ||||
---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | ||||
A | 298 | 250 × 250 | −0.2829 | 4.5780 | 3.0237 | 0 | 1 | 0.0369 | Close to an inverted V. |
B | 487 | 120 × 120 | −1.7309 | 1.0886 | −0.2066 | 0 | 1 | 0.0021 | Swinging near the original position |
C | 178 | 250 × 250 | −12.0820 | 11.1423 | 2.8393 | 0 | 2 | 0.3599 | Reciprocating moves with a complex trajectory |
Scenes | BSF | SNRG | ||||
---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | |
A | 1.9916 | 4.3897 | 2.8061 | 1.8530 | 4.7622 | 3.0103 |
B | 1.2775 | 2.1021 | 1.7039 | 4.1573 | 6.8882 | 5.5784 |
C | 8.6084 | 37.7113 | 13.8459 | 2.0991 | 25.5206 | 6.6343 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Xu, Z.; Zhang, J.; Zhao, Q. Single-Pixel Background Modeling Algorithm for Strong Sky Scenes Based on Local Region Spatial Bases. Sensors 2023, 23, 522. https://doi.org/10.3390/s23010522
Li B, Xu Z, Zhang J, Zhao Q. Single-Pixel Background Modeling Algorithm for Strong Sky Scenes Based on Local Region Spatial Bases. Sensors. 2023; 23(1):522. https://doi.org/10.3390/s23010522
Chicago/Turabian StyleLi, Biao, Zhiyong Xu, Jianlin Zhang, and Quanyou Zhao. 2023. "Single-Pixel Background Modeling Algorithm for Strong Sky Scenes Based on Local Region Spatial Bases" Sensors 23, no. 1: 522. https://doi.org/10.3390/s23010522
APA StyleLi, B., Xu, Z., Zhang, J., & Zhao, Q. (2023). Single-Pixel Background Modeling Algorithm for Strong Sky Scenes Based on Local Region Spatial Bases. Sensors, 23(1), 522. https://doi.org/10.3390/s23010522