Hybrid Cooperative Cache Based on Temporal Convolutional Networks in Vehicular Edge Network
Abstract
:1. Introduction
- We predict content popularity based on TCN, and then a hybrid content value is proposed to measure the cached content;
- Dynamic programming is proposed to make the best cache decision and maximize the overall HCV of the cache strategy;
- Simulation experiments verify the excellent caching performance of THCS algorithm.
2. Related Works
2.1. Non-Cooperative Caching Strategy
2.2. Cooperative Caching Strategy
3. System Model
3.1. Network Model
3.2. Problem Formulation
4. Cooperative Caching Decisions Based on Temporal Convolutional Networks and Hybrid Content Values
4.1. Dynamic Cluster Construction
4.1.1. Cluster Head Selection
4.1.2. Cluster Construction
4.2. Content Popularity Prediction Based on Temporal Convolutional Networks
4.2.1. Content Feature Predictor
4.2.2. Future Content Popularity Assessment
4.3. Hybrid Content Value (HCV)
4.4. Decision Making Based on Dynamic Planning
Algorithm 1 HCV-based dynamic planning caching algorithm. |
Input: Cache space , Cache remaining space j, Total cache content k, . Output: Decision Z.
|
5. Experimental Results and Analysis
5.1. Simulation Settings
5.2. Comparison of Algorithms and Indicators
5.3. Analysis of Results and Comparison of Performance
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernández, Ó.B.; Sansano-Sansano, E.; Trilles, S.; Miedes, A.C. A Reactive Architectural Proposal for Fog/Edge Computing in the Internet of Things Paradigm with Application in Deep Learning. In Artificial Intelligence, Machine Learning, and Optimization Tools for Smart Cities: Designing for Sustainability; Pardalos, P.M., Rassia, S.T., Tsokas, A., Eds.; Springer Optimization and Its Applications, Springer: Berlin/Heidelberg, Germany, 2022; pp. 155–175. [Google Scholar] [CrossRef]
- Yu, G.; Cai, Z.; Wang, S.; Chen, H.; Liu, F.; Liu, A. Unsupervised Online Anomaly Detection With Parameter Adaptation for KPI Abrupt Changes. IEEE Trans. Netw. Serv. Manag. 2020, 17, 1294–1308. [Google Scholar] [CrossRef]
- Arena, F.; Pau, G. An Overview of Vehicular Communications. Future Internet 2019, 11, 27. [Google Scholar] [CrossRef]
- Tan, L.T.; Hu, R.Q.; Qian, Y. D2D Communications in Heterogeneous Networks With Full-Duplex Relays and Edge Caching. IEEE Trans. Ind. Inform. 2018, 14, 4557–4567. [Google Scholar] [CrossRef]
- Xu, J.; Ota, K.; Dong, M. Saving Energy on the Edge: In-Memory Caching for Multi-Tier Heterogeneous Networks. IEEE Commun. Mag. 2018, 56, 102–107. [Google Scholar] [CrossRef]
- Khelifi, H.; Luo, S.; Nour, B.; Sellami, A.; Moungla, H.; Naït-Abdesselam, F. An Optimized Proactive Caching Scheme Based on Mobility Prediction for Vehicular Networks. In Proceedings of the IEEE Global Communications Conference, GLOBECOM 2018, Abu Dhabi, United Arab Emirates, 9–13 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar] [CrossRef]
- AlNagar, Y.; Hosny, S.; El-Sherif, A.A. Towards Mobility-Aware Proactive Caching for Vehicular Ad hoc Networks. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference Workshop, WCNC Workshops 2019, Marrakech, Morocco, 15–18 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Tan, L.T.; Hu, R.Q. Mobility-Aware Edge Caching and Computing in Vehicle Networks: A Deep Reinforcement Learning. IEEE Trans. Veh. Technol. 2018, 67, 10190–10203. [Google Scholar] [CrossRef]
- Bitaghsir, S.A.; Khonsari, A. Cooperative caching for content dissemination in vehicular networks. Int. J. Commun. Syst. 2018, 31. [Google Scholar] [CrossRef]
- Ostrovskaya, S.; Surnin, O.; Hussain, R.; Bouk, S.H.; Lee, J.; Mehran, N.; Ahmed, S.H.; Benslimane, A. Towards Multi-metric Cache Replacement Policies in Vehicular Named Data Networks. In Proceedings of the 29th IEEE Annual International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2018, Bologna, Italy, 9–12 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Yao, L.; Chen, A.; Deng, J.; Wang, J.; Wu, G. A Cooperative Caching Scheme Based on Mobility Prediction in Vehicular Content Centric Networks. IEEE Trans. Veh. Technol. 2018, 67, 5435–5444. [Google Scholar] [CrossRef]
- Jiang, W. Graph-based deep learning for communication networks: A survey. Comput. Commun. 2022, 185, 40–54. [Google Scholar] [CrossRef]
- Lian, L.; Chen, N.; Ou, P.; Yuan, X. Mobile Edge Cooperative Caching Strategy Based on Spatio-temporal Graph Convolutional Model. In Proceedings of the 25th IEEE International Conference on Computer Supported Cooperative Work in Design, CSCWD 2022, Hangzhou, China, 4–6 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1396–1401. [Google Scholar] [CrossRef]
- Zhou, X.; Bilal, M.; Dou, R.; Rodrigues, J.J.; Zhao, Q.; Dai, J.; Xu, X. Edge Computation Offloading with Content Caching in 6G-Enabled IoV. IEEE Trans. Intell. Transp. Syst. 2023. Available online: https://ieeexplore.ieee.org/document/10034418 (accessed on 23 May 2022). [CrossRef]
- Zhang, Y.; Li, C.; Luan, T.H.; Fu, Y.; Shi, W.; Zhu, L. A Mobility-Aware Vehicular Caching Scheme in Content Centric Networks: Model and Optimization. IEEE Trans. Veh. Technol. 2019, 68, 3100–3112. [Google Scholar] [CrossRef]
- Kong, Q.; Lu, R.; Ma, M.; Bao, H. A Privacy-Preserving and Verifiable Querying Scheme in Vehicular Fog Data Dissemination. IEEE Trans. Veh. Technol. 2019, 68, 1877–1887. [Google Scholar] [CrossRef]
- Song, C.; Xu, W.; Wu, T.; Yu, S.; Zeng, P.; Zhang, N. QoE-Driven Edge Caching in Vehicle Networks Based on Deep Reinforcement Learning. IEEE Trans. Veh. Technol. 2021, 70, 5286–5295. [Google Scholar] [CrossRef]
- Kazmi, S.M.A.; Tri, N.D.; Yaqoob, I.; Ndikumana, A.; Ahmed, E.; Hussain, R.; Hong, C.S. Infotainment Enabled Smart Cars: A Joint Communication, Caching, and Computation Approach. IEEE Trans. Veh. Technol. 2019, 68, 8408–8420. [Google Scholar] [CrossRef]
- Amer, R.; Butt, M.M.; Bennis, M.; Marchetti, N. Inter-Cluster Cooperation for Wireless D2D Caching Networks. IEEE Trans. Wirel. Commun. 2018, 17, 6108–6121. [Google Scholar] [CrossRef]
- Wu, D.; Liu, Q.; Wang, H.; Yang, Q.; Wang, R. Cache Less for More: Exploiting Cooperative Video Caching and Delivery in D2D Communications. IEEE Trans. Multim. 2019, 21, 1788–1798. [Google Scholar] [CrossRef]
- Ma, T.; Chen, X.; Ma, Z.; Chen, Y. Deep Reinforcement Learning for Pre-caching and Task Allocation in Internet of Vehicles. In Proceedings of the 2020 IEEE International Conference on Smart Internet of Things, SmartIoT 2020, Beijing, China, 14–16 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 79–85. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, R.; Hossain, M.S.; Alhamid, M.F.; Guizani, M. Heterogeneous Information Network-Based Content Caching in the Internet of Vehicles. IEEE Trans. Veh. Technol. 2019, 68, 10216–10226. [Google Scholar] [CrossRef]
- Yu, Z.; Hu, J.; Min, G.; Zhao, Z.; Miao, W.; Hossain, M.S. Mobility-Aware Proactive Edge Caching for Connected Vehicles Using Federated Learning. IEEE Trans. Intell. Transp. Syst. 2021, 22, 5341–5351. [Google Scholar] [CrossRef]
- Zhu, X.; Jiang, C.; Kuang, L.; Zhao, Z. Cooperative Multilayer Edge Caching in Integrated Satellite-Terrestrial Networks. IEEE Trans. Wirel. Commun. 2022, 21, 2924–2937. [Google Scholar] [CrossRef]
- Rottenstreich, O.; Kulik, A.; Joshi, A.; Rexford, J.; Rétvári, G.; Menasché, D.S. Data Plane Cooperative Caching With Dependencies. IEEE Trans. Netw. Serv. Manag. 2022, 19, 2092–2106. [Google Scholar] [CrossRef]
- Chang, Q.; Jiang, Y.; Zheng, F.; Bennis, M.; You, X. Cooperative Edge Caching via Multi Agent Reinforcement Learning in Fog Radio Access Networks. In Proceedings of the IEEE International Conference on Communications, ICC 2022, Seoul, Republic of Korea, 16–20 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 3641–3646. [Google Scholar] [CrossRef]
- Yao, L.; Xu, X.; Deng, J.; Wu, G.; Li, Z. A Cooperative Caching Scheme for VCCN With Mobility Prediction and Consistent Hashing. IEEE Trans. Intell. Transp. Syst. 2022, 23, 20230–20242. [Google Scholar] [CrossRef]
- Yang, Y.; Song, T. Energy-Efficient Cooperative Caching for Information-Centric Wireless Sensor Networking. IEEE Internet Things J. 2022, 9, 846–857. [Google Scholar] [CrossRef]
- Wu, Q.; Zhao, Y.; Fan, Q.; Fan, P.; Wang, J.; Zhang, C. Mobility-Aware Cooperative Caching in Vehicular Edge Computing Based on Asynchronous Federated and Deep Reinforcement Learning. IEEE J. Sel. Top. Signal Process. 2023, 17, 66–81. [Google Scholar] [CrossRef]
- Narayanan, A.; Verma, S.; Ramadan, E.; Babaie, P.; Zhang, Z. DeepCache: A Deep Learning Based Framework For Content Caching. In Proceedings of the 2018 Workshop on Network Meets AI & ML, NetAI@SIGCOMM 2018, Budapest, Hungary, 24 August 2018; ACM: New York, NY, USA, 2018; pp. 48–53. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Zhao, J.; Zhu, Q. Mobile Edge Cache Strategy Based on Neural Collaborative Filtering. IEEE Access 2020, 8, 18475–18482. [Google Scholar] [CrossRef]
- Yu, G.; Wu, J. Content caching based on mobility prediction and joint user Prefetch in Mobile edge networks. Peer-to-Peer Netw. Appl. 2020, 13, 1839–1852. [Google Scholar] [CrossRef]
- Bai, S.; Kolter, J.Z.; Koltun, V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar] [CrossRef]
- Breslau, L.; Cao, P.; Fan, L.; Phillips, G.; Shenker, S. Web Caching and Zipf-like Distributions: Evidence and Implications. In Proceedings of the IEEE INFOCOM ’99. The Conference on Computer Communications, Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies, The Future Is Now, New York, NY, USA, 21–25 March 1999; IEEE Computer Society: Washington, DC, USA, 1999; pp. 126–134. [Google Scholar] [CrossRef]
- Li, L.; Talwalkar, A. Random Search and Reproducibility for Neural Architecture Search. In Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence—UAI 2019, Tel Aviv, Israel, 22–25 July 2019; Globerson, A., Silva, R., Eds.; Proceedings of Machine Learning Research. AUAI Press: Arlington, VA, USA, 2019; Volume 115, pp. 367–377. Available online: http://proceedings.mlr.press/v115/li20c.html (accessed on 15 May 2022).
- Musa, S.S.; Zennaro, M.; Libsie, M.; Pietrosemoli, E. Mobility-Aware Proactive Edge Caching Optimization Scheme in Information-Centric IoV Networks. Sensors 2022, 22, 1387. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
residual network depth | 10 |
dilation interval | 1, 2, 4, 8 |
kernel size | 2 |
sliding window | 2000 |
sliding step length | 200 |
input length | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Jin, J.; Ma, H.; Xing, L. Hybrid Cooperative Cache Based on Temporal Convolutional Networks in Vehicular Edge Network. Sensors 2023, 23, 4619. https://doi.org/10.3390/s23104619
Wu H, Jin J, Ma H, Xing L. Hybrid Cooperative Cache Based on Temporal Convolutional Networks in Vehicular Edge Network. Sensors. 2023; 23(10):4619. https://doi.org/10.3390/s23104619
Chicago/Turabian StyleWu, Honghai, Jichong Jin, Huahong Ma, and Ling Xing. 2023. "Hybrid Cooperative Cache Based on Temporal Convolutional Networks in Vehicular Edge Network" Sensors 23, no. 10: 4619. https://doi.org/10.3390/s23104619
APA StyleWu, H., Jin, J., Ma, H., & Xing, L. (2023). Hybrid Cooperative Cache Based on Temporal Convolutional Networks in Vehicular Edge Network. Sensors, 23(10), 4619. https://doi.org/10.3390/s23104619