Modeling Cues May Reduce Sway Following Sit-To-Stand Transfer for People with Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Study Design
2.3. Demographic Measures
2.4. Equipment and Dependent Variables
2.5. Data Analysis
2.6. Comparison of Postural Sway between the PD and HC Groups
2.7. Comparison of Postural Sway across Conditions for the PD Group
3. Results
3.1. Comparison of Postural Sway between the PD and HC Groups
3.2. Comparison of Postural Sway across Conditions for the PD Group
4. Discussion
4.1. Modeling
4.2. Incidents of Loss of Balance
4.3. Selection and Placement of Targets
4.4. Cueing for an Internal Attentional Focus
4.5. Limitations and Future Research
4.6. Clinical Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dickson, D.W. Neuropathology of Parkinson disease. Park. Relat. Disord. 2018, 46, S30–S33. [Google Scholar] [CrossRef] [PubMed]
- Błaszczyk, J.W.; Orawiec, R. Assessment of postural control in patients with Parkinson’s disease: Sway ratio analysis. Hum. Mov. Sci. 2011, 30, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; Ghebremedhin, E.; Rüb, U.; Bratzke, H.; Del Tredici, K. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res. 2004, 318, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Cunnington, R.; Windischberger, C.; Deecke, L.; Moser, E. The preparation and execution of self-initiated and externally-triggered movement: A study of event-related fMRI. Neuroimage 2002, 15, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Lim, I.; van Wegen, E.; de Goede, C.; Deutekom, M.; Nieuwboer, A.; Willems, A.; Jones, D.; Rochester, L.; Kwakkel, G. Effects of external rhythmical cueing on gait in patients with Parkinson’s disease: A systematic review. Clin. Rehabil. 2005, 19, 695–713. [Google Scholar] [CrossRef] [PubMed]
- Rocha, P.A.; Porfírio, G.M.; Ferraz, H.B.; Trevisani, V.F. Effects of external cues on gait parameters of Parkinson’s disease patients: A systematic review. Clin. Neurol. Neurosurg. 2014, 124, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Rochester, L.; Hetherington, V.; Jones, D.; Nieuwboer, A.; Willems, A.-M.; Kwakkel, G.; van Wegen, E. The Effect of External Rhythmic Cues (Auditory and Visual) on Walking During a Functional Task in Homes of People With Parkinson’s Disease. Arch. Phys. Med. Rehabil. 2005, 86, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Nieuwboer, A.; Kwakkel, G.; Rochester, L.; Jones, D.; van Wegen, E.; Willems, A.M.; Chavret, F.; Hetherington, V.; Baker, K.; Lim, I. Cueing training in the home improves gait-related mobility in Parkinson’s disease: The RESCUE trial. J. Neurol. Neurosurg. Psychiatry 2007, 78, 134–140. [Google Scholar] [CrossRef]
- Majsak, M.J.; Kaminski, T.; Gentile, A.M.; Flanagan, J.R. The reaching movements of patients with Parkinson’s disease under self-determined maximal speed and visually cued conditions. Brain 1998, 121, 755–766. [Google Scholar] [CrossRef]
- Ma, H.I.; Trombly, C.A.; Tickle-Degnen, L.; Wagenaar, R.C. Effect of one single auditory cue on movement kinematics in patients with Parkinson’s disease. Am. J. Phys. Med. Rehabil. 2004, 83, 530–536. [Google Scholar] [CrossRef]
- Nackaerts, E.; Nieuwboer, A.; Broeder, S.; Smits-Engelsman, B.C.M.; Swinnen, S.P.; Vandenberghe, W.; Heremans, E. Opposite Effects of Visual Cueing During Writing-Like Movements of Different Amplitudes in Parkinson’s Disease. Neurorehabilit. Neural Repair 2015, 30, 431–439. [Google Scholar] [CrossRef]
- Janssen, S.; de Ruyter van Steveninck, J.; Salim, H.S.; Cockx, H.M.; Bloem, B.R.; Heida, T.; Van Wezel, R.J. The effects of augmented reality visual cues on turning in place in Parkinson’s disease patients with freezing of gait. Front. Neurol. 2020, 11, 185. [Google Scholar] [CrossRef] [PubMed]
- Mak, M.K.; Hui-Chan, C.W. Audiovisual cues can enhance sit-to-stand in patients with Parkinson’s disease. Mov. Disord. 2004, 19, 1012–1019. [Google Scholar] [CrossRef] [PubMed]
- Mak, M.K.Y.; Hui-Chan, C.W.Y. Cued task-specific training is better than exercise in improving sit-to-stand in patients with Parkinson’s disease: A randomized controlled trial. Mov. Disord. 2008, 23, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Karlawish, J.; Cary, M.; Moelter, S.T.; Siderowf, A.; Sullo, E.; Xie, S.; Weintraub, D. Cognitive impairment and PD patients’ capacity to consent to research. Neurology 2013, 81, 801–807. [Google Scholar] [CrossRef]
- Flegal, K.M.; Carroll, M.D.; Ogden, C.L.; Johnson, C.L. Prevalence and Trends in Obesity Among US Adults, 1999-2000. JAMA 2002, 288, 1723–1727. [Google Scholar] [CrossRef]
- de Onis, M.; Habicht, J.P. Anthropometric reference data for international use: Recommendations from a World Health Organization Expert Committee. Am. J. Clin. Nutr. 1996, 64, 650–658. [Google Scholar] [CrossRef]
- Sofuwa, O.; Nieuwboer, A.; Desloovere, K.; Willems, A.M.; Chavret, F.; Jonkers, I. Quantitative gait analysis in Parkinson’s disease: Comparison with a healthy control group. Arch. Phys. Med. 2005, 86, 1007–1013. [Google Scholar] [CrossRef]
- Siderowf, A.; McDermott, M.; Kieburtz, K.; Blindauer, K.; Plumb, S.; Shoulson, I.; Parkinson Study Group. Test–retest reliability of the unified Parkinson’s disease rating scale in patients with early Parkinson’s disease: Results from a multicenter clinical trial. Mov. Disord. 2002, 17, 758–763. [Google Scholar] [CrossRef]
- Martínez-Martín, P.; Payo, B.F.; The Grupo Centro for Study of Movement Disorders. Quality of life in Parkinson’s disease: Validation study of the PDQ-39 Spanish version. J. Neurol. 1998, 245 (Suppl. S1), S34–S38. [Google Scholar] [CrossRef]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.; Dodel, R.; et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef]
- Mancini, M.; Carlson-Kuhta, P.; Zampieri, C.; Nutt, J.G.; Chiari, L.; Horak, F.B. Postural sway as a marker of progression in Parkinson’s disease: A pilot longitudinal study. Gait Posture 2012, 36, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.; Stuart, S.; McBarron, G.; Fino, P.C.; Mancini, M.; Curtze, C. Validity of Mobility Lab (version 2) for gait assessment in young adults, older adults and Parkinson’s disease. Physiol. Meas. 2019, 40, 095003. [Google Scholar] [CrossRef] [PubMed]
- Hulbert, S.; Ashburn, A.; Robert, L.; Verheyden, G. A narrative review of turning deficits in people with Parkinson’s disease. Disabil. Rehabilitation 2014, 37, 1382–1389. [Google Scholar] [CrossRef] [PubMed]
- Zampieri, C.; Salarian, A.; Carlson-Kuhta, P.; Aminian, K.; Nutt, J.G.; Horak, F.B. The instrumented timed up and go test: Potential outcome measure for disease modifying therapies in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2010, 81, 171–176. [Google Scholar] [CrossRef] [PubMed]
- APDM. Comprehensive Gait and Balance Analysis 2017. Available online: https://www.apdm.com/mobility/ (accessed on 3 February 2023).
- FDA. Sinemet®(Carbidopa-Levodopa). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/017555s069lbl.pdf (accessed on 24 January 2023).
- Rizzolatti, G.; Craighero, L. The mirror-neuron system. Annu. Rev. Neurosci. 2004, 27, 169–192. [Google Scholar] [CrossRef]
- Stoykov, M.E.; Madhavan, S. Motor priming in neurorehabilitation. J. Neurol. Phys. Ther. 2015, 39, 33. [Google Scholar] [CrossRef]
- Henderson, E.J.; Morgan, G.S.; Amin, J.; Gaunt, D.M.; Ben-Shlomo, Y. The minimum clinically important difference (MCID) for a falls intervention in Parkinson’s: A delphi study. Park. Relat. Disord. 2019, 61, 106–110. [Google Scholar]
- Cao, S.S.; Yuan, X.Z.; Wang, S.H.; Taximaimaiti, R.; Wang, X.P. Transverse strips instead of wearable laser lights alleviate the sequence effect toward a destination in Parkinson’s disease patients with freezing of gait. Front. Neurol. 2020, 11, 838. [Google Scholar] [CrossRef]
Characteristic | Healthy Control (n = 13) | Subjects with PD (n = 13) | 95% CI |
---|---|---|---|
Gender (male/female) | 7/6 | 8/5 | |
Age in years Mean (SD) | 67.31 (10.41) | 68.46 (9.11) | −9.07, 6.77 |
Height in cm Mean (SD) | 165.72 (10.49) | 172.00 (8.72) | −14.09, 1.52 |
Weight in kg Mean (SD) | 82.36 (14.41) | 84.73 (12.54) | −13.69, 8.95 |
10MWT (m/s) Mean (SD) | 1.23 (0.12) | 0.87(0.21) | −3.09, −1.03 |
Years with symptoms Mean (SD) | 10.38 (9.18) | - | |
Years with diagnosis Mean (SD) | - | 5.38 (3.3) | - |
MDS-UPDRS–total score–Median (range) Possible range: 0–199 | - | 70 (48–112) | - |
PDQ-39–Median (range) Possible range: 0–100 | - | 34 (4–74) | - |
Postural Sway Characteristic | Healthy Control Mean (SD) | Parkinson’s Disease Mean (SD) | |||
---|---|---|---|---|---|
Uncued | Uncued | Modeling | Reach to Targets | Internal Focus | |
Sway Area (°2) | 0.767 (0.303) | 5.192 (7.074) * | 3.147 (3.893) * | 4.824 (7.100) * | 4.316 (4.798) * |
Coronal Sway (°) | 0.158 (0.103) | 0.272 (0.177) | 0.197 (0.141) | 0.265 (0.200) | 0.288 (0.218) |
Sagittal Sway (°) | 0.445 (0.248) | 0.816 (0.724) | 0.542 (0.340) | 0.702 (0.425) | 0.601 (0.396) |
Sway Jerk (m/s3) | 0.644 (0.417) | 5.030 (7.28) * | 2.361 (3.061) | 2.564 (2.69) * | 2.320 (2.501) * |
Sway Velocity (m/s) | 0.149 (0.153) | 0.215 (0.178) | 0.157 (0.141) | 0.204 (0.181) | 0.207 (0.143) |
Sway Characteristic | Condition Mean (SD) | |||
---|---|---|---|---|
Uncued | Modeling | Reach to Targets | Internal Attentional Focus | |
Sway Area (°2) | 5.192 (7.074) | 3.147 (3.893) | 4.824 (7.100) | 4.316 (4.798) |
Coronal Sway * (°) | 0.272 (0.177) † | 0.197 (0.141) † | 0.265(0.200) † | 0.288 (0.218) |
Sagittal Sway (°) | 0.816 (0.724) | 0.542 (0.340) | 0.702 (0.425) | 0.601 (0.396) |
Sway Jerk (m/s3) | 5.030 (7.28) | 2.361 (3.061) | 2.564 (2.69) | 2.320 (2.501) |
Sway Velocity (m/s) | 0.215 (0.178) | 0.157 (0.141) | 0.204 (0.181) | 0.207 (0.143) |
Losses of Balance | Uncued | Reaching to Target | Modeling | Internal Attentional Focus |
---|---|---|---|---|
Step | - | 1 | - | - |
Assistance | - | 1 | - | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, R.A.; Fulk, G.; Dibble, L.; Boolani, A.; Vieira, E.R.; Canbek, J. Modeling Cues May Reduce Sway Following Sit-To-Stand Transfer for People with Parkinson’s Disease. Sensors 2023, 23, 4701. https://doi.org/10.3390/s23104701
Martin RA, Fulk G, Dibble L, Boolani A, Vieira ER, Canbek J. Modeling Cues May Reduce Sway Following Sit-To-Stand Transfer for People with Parkinson’s Disease. Sensors. 2023; 23(10):4701. https://doi.org/10.3390/s23104701
Chicago/Turabian StyleMartin, Rebecca A., George Fulk, Lee Dibble, Ali Boolani, Edgar R. Vieira, and Jennifer Canbek. 2023. "Modeling Cues May Reduce Sway Following Sit-To-Stand Transfer for People with Parkinson’s Disease" Sensors 23, no. 10: 4701. https://doi.org/10.3390/s23104701
APA StyleMartin, R. A., Fulk, G., Dibble, L., Boolani, A., Vieira, E. R., & Canbek, J. (2023). Modeling Cues May Reduce Sway Following Sit-To-Stand Transfer for People with Parkinson’s Disease. Sensors, 23(10), 4701. https://doi.org/10.3390/s23104701