Bi-Directional Free-Space Visible Light Communication Supporting Multiple Moveable Clients Using Light Diffusing Optical Fiber
Abstract
:1. Introduction
2. Design and Structure of the Light-Diffusing Optical Fiber (LDOF)
3. Architecture and Experiment of the Bi-Directional Free-Space VLC
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elgala, H.; Mesleh, R.; Haas, H. Indoor optical wireless communication: Potential and state-of-the-art. IEEE Commun. Mag. 2011, 49, 56–62. [Google Scholar] [CrossRef]
- Haas, H.; Elmirghani, J.; White, I. Optical wireless communication. Phil. Trans. R. Soc. A 2020, 378, 20200051. [Google Scholar] [CrossRef]
- Chow, C.W.; Yeh, C.H.; Liu, Y.; Lai, Y.; Wei, L.Y.; Hsu, C.W.; Chen, G.H.; Liao, X.L.; Lin, K.H. Enabling techniques for optical wireless communication systems. In Proceedings of the OFC 2020, M2F.1, (Invited), San Diego, CA, USA, 8–12 March 2020. [Google Scholar]
- Wang, K.; Song, T.; Wang, Y.; Fang, C.; Nirmalathas, A.; Lim, C.; Wong, E.; Kandeepan, S. Evolution of short-range optical wireless communications. In Proceedings of the OFC 2022, San Diego, CA, USA, 6–10 March 2022. Paper Tu3C.4. [Google Scholar]
- Wang, K.; Nirmalathas, A.; Lim, C.; Skafidas, E. High-speed indoor optical wireless communication system with single channel imaging receiver. Opt. Express 2012, 20, 8442–8456. [Google Scholar] [CrossRef] [PubMed]
- Chow, C.W.; Yeh, C.H.; Liu, Y.; Liu, Y.F. Digital signal processing for light emitting diode based visible light communication. IEEE Photon. Soc. Newslett. 2012, 26, 9–13. [Google Scholar]
- Minh, H.L.; O’Brien, D.; Faulkner, G.; Zeng, L.; Lee, K.; Jung, D.; Oh, Y.J.; Won, E.T. 100-Mb/s NRZ visible light communications using a post-equalized white LED. IEEE Photon. Technol. Lett. 2009, 21, 1063–1065. [Google Scholar] [CrossRef]
- Vučić, J.; Kottke, C.; Nerreter, S.; Langer, K.D.; Walewski, J.W. 513 Mbit/s visible light communications link based on DMT-modulation of a white LED. J. Lightw. Technol. 2010, 28, 3512–3518. [Google Scholar] [CrossRef]
- Chow, C.W.; Yeh, C.H.; Liu, Y.F.; Liu, Y. Improved modulation speed of LED visible light communication system integrated to main electricity network. Elect. Lett. 2011, 47, 867–868. [Google Scholar] [CrossRef]
- Lu, H.H.; Lin, Y.P.; Wu, P.Y.; Chen, C.Y.; Chen, M.C.; Jhang, T.W. A multiple-input-multiple-output visible light communication system based on VCSELs and spatial light modulators. Opt. Exp. 2014, 22, 3468–3474. [Google Scholar] [CrossRef]
- Haas, H. Visible Light Communication. In Proceedings of the OFC 2015 Pap, Los Angeles, CA, USA, 22–26 March 2015; p. 15, Tu2G.5. [Google Scholar]
- Li, C.Y.; Lu, H.H.; Tsai, W.S.; Feng, C.Y.; Chou, C.R.; Chen, Y.H.; Nainggolan, A. White-lighting and WDM-VLC system using transmission gratings and an engineered diffuser. Opt. Lett. 2020, 45, 6206–6209. [Google Scholar] [CrossRef]
- Wu, T.C.; Chi, Y.C.; Wang, H.Y.; Tsai, C.T.; Huang, Y.F.; Lin, G.R. Tricolor R/G/B laser diode based eye-safe white lighting communication beyond 8 Gbit/s. Sci. Rep. 2017, 7, 11. [Google Scholar] [CrossRef]
- Tsai, C.T.; Cheng, C.H.; Kuo, H.C.; Lin, G.R. Toward high-speed visible laser lighting based optical wireless communications. Prog. Quant. Electron. 2019, 67, 100225. [Google Scholar] [CrossRef]
- Yu, T.-C.; Huang, W.-T.; Lee, W.-B.; Chow, C.-W.; Chang, S.-W.; Kuo, H.-C. Visible Light Communication System Technology Review: Devices, Architectures, and Applications. Crystals 2021, 11, 1098. [Google Scholar] [CrossRef]
- Chi, N.; Zhou, Y.; Wei, Y.; Hu, F. Visible light communication in 6G: Advances, challenges, and prospects. IEEE Veh. Technol. Mag. 2020, 15, 93–102. [Google Scholar] [CrossRef]
- Niarchou, E.; Boucouvalas, A.C.; Ghassemlooy, Z.; Alves, L.N.; Zvanovec, S. Visible Light Communications for 6G Wireless Networks. In Proceedings of the Third South American Colloquium on Visible Light Communications (SACVLC), Toledo, Brazil, 11–12 November 2021; pp. 01–06. [Google Scholar] [CrossRef]
- Shen, C.; Guo, Y.; Oubei, H.M.; Ng, T.K.; Liu, G.; Park, K.H.; Ho, K.T.; Alouini, M. -S.; Ooi, B.S. 20-meter underwater wireless optical communication link with 1.5 Gbps data rate. Opt. Exp. 2016, 24, 25502–25509. [Google Scholar] [CrossRef]
- Shen, C.; Alkhazragi, O.; Sun, X.; Guo, Y.; Ng, T.K.; Ooi, B.S. Laser-based visible light communications and underwater wireless optical communications: A device perspective. In Proceedings of the SPIE 10939 Nov. Plane Semicond. Lasers XVIII, San Francisco, CA, USA, 1 March 2019; p. 109390E. [Google Scholar]
- Li, C.Y.; Lu, H.H.; Huang, Y.C.; Huang, Q.P.; Xie, J.Y.; Tsai, S.E. 50 Gb/s PAM4 underwater wireless optical communication systems across the water–air–water interface [Invited]. Chin. Opt. Lett. 2019, 17, 100004. [Google Scholar] [CrossRef]
- Chen, L.K.; Shao, Y.; Di, Y. Underwater and Water-Air Optical Wireless Communication. J. Light. Technol. 2022, 40, 1440–1452. [Google Scholar] [CrossRef]
- Cincotta, S.; Neild, A.; He, C.; Armstrong, J. Visible Light Positioning Using an Aperture and a Quadrant Photodiode. In Proceedings of the 2017 IEEE Globecom Workshops (GC Wkshps), Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, D.R.; Yang, S.H.; Son, Y.H.; Han, S.K. An indoor visible light communication positioning system using a RF carrier allocation technique. J. Lightw. Technol. 2013, 31, 134–144. [Google Scholar] [CrossRef]
- Guan, W.; Wu, Y.; Wen, S.; Chen, H.; Yang, C.; Chen, Y.; Zhang, Z. A novel three-dimensional indoor positioning algorithm design based on visible light communication. Opt. Commun. 2017, 392, 282–293. [Google Scholar] [CrossRef]
- Hsu, L.-S.; Chow, C.-W.; Liu, Y.; Yeh, C.-H. 3D Visible Light-Based Indoor Positioning System Using Two-Stage Neural Network (TSNN) and Received Intensity Selective Enhancement (RISE) to Alleviate Light Non-Overlap Zones. Sensors 2022, 22, 8817. [Google Scholar] [CrossRef]
- Danakis, C.; Afgani, M.; Povey, G.; Underwood, I.; Haas, H. Using a CMOS camera sensor for visible light communication. In Proceedings of the OWC’12, Anaheim, CA, USA, 3–7 December 2012; pp. 1244–1248. [Google Scholar]
- Luo, P.; Zhang, M.; Ghassemlooy, Z.; Minh, H.L.; Tsai, H.M.; Tang, X.; Png, L.C.; Han, D. Experimental demonstration of RGB LED-based optical camera communications. IEEE Photon. J. 2015, 7, 7904212. [Google Scholar] [CrossRef]
- Cahyadi, W.A.; Chung, Y.H.; Ghassemlooy, Z.; Hassan, N.B. Optical Camera Communications: Principles, Modulations, Potential and Challenges. Electronics 2020, 9, 1339. [Google Scholar] [CrossRef]
- Chow, C.W.; Liu, Y.; Yeh, C.H.; Chang, Y.H.; Lin, Y.S.; Hsu, K.L.; Liao, X.L.; Lin, K.H. Display Light Panel and Rolling Shutter Image Sensor Based Optical Camera Communication (OCC) Using Frame-Averaging Background Removal and Neural Network. J. Light. Technol. 2021, 39, 4360–4366. [Google Scholar] [CrossRef]
- Singh, R.; Feng, F.; Hong, Y.; Faulkner, G.; Deshmukh, R.; Vercasson, G.; Bouchet, O.; Petropoulos, P.; O’Brien, D. Design and characterisation of terabit/s capable compact localisation and beam-steering terminals for fiber-wireless-fiber links. J. Lightw. Technol. 2020, 38, 6817–6826. [Google Scholar] [CrossRef]
- Wu, L.; Han, Y.; Li, Z.; Zhang, Y.; Fu, H.Y. 12 Gbit/s indoor optical wireless communication system with ultrafast beam-steering using tunable VCSEL. Opt. Exp. 2022, 30, 15049. [Google Scholar] [CrossRef]
- Oh, C.W.; Cao, Z.; Tangdiongga, E.; Koonen, T. Free-space transmission with passive 2D beam steering for multi-gigabit-per-second per-beam indoor optical wireless networks. Opt. Exp. 2016, 24, 19211. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, X.; Osnabrugge, G.; Li, J.; Vellekoop, I.M.; Koonen, A.M.J. Reconfigurable beam system for non-line-of-sight free-space optical communication. Light Sci. Appl. 2019, 8, 69. [Google Scholar] [CrossRef]
- Chow, C.W.; Chang, Y.C.; Kuo, S.I.; Kuo, P.C.; Wang, J.W.; Jian, Y.H.; Ahmad, Z.; Fu, P.H.; Shi, J.W.; Huang, D.W.; et al. Actively controllable beam steering optical wireless communication (OWC) using integrated optical phased array (OPA). J. Light. Technol. 2023, 41, 1122–1128. [Google Scholar] [CrossRef]
- Kuo, P.C.; Kuo, S.I.; Wang, J.W.; Jian, Y.H.; Ahmad, Z.; Fu, P.H.; Chang, Y.C.; Shi, J.W.; Huang, D.W.; Liu, Y.; et al. Actively Steerable Integrated Optical Phased Array (OPA) for Optical Wireless Communication (OWC). In Proceedings of the Optical Fiber Communication Conference (OFC) 2022, San Diego, CA, USA, 6–10 March 2022; Optica Publishing Group: Washington, DC, USA, 2022. Paper M1C.7. [Google Scholar]
- Peyronel, T.; Quirk, K.J.; Wang, S.C.; Tiecke, T.G. Luminescent detector for free-space optical communication. Optica 2016, 3, 787–792. [Google Scholar] [CrossRef]
- Ishibashi, M.; Takizuka, H.; Haruyama, S. Free-space optical communication system for industrial vehicles using two types of optical fibers. In Proceedings of the IEEE Globecom Workshops, Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–5. [Google Scholar]
- Kang, C.H.; Trichili, A.; Alkhazragi, O.; Zhang, H.; Subedi, R.C.; Guo, Y.; Mitra, S.; Shen, C.; Roqan, I.S.; Ng, T.K.; et al. Ultraviolet-to-blue color-converting scintillating-fibers photoreceiver for 375-nm laser-based underwater wireless optical communication. Opt. Exp. 2019, 27, 30450–30461. [Google Scholar] [CrossRef]
- Manousiadis, P.P.; Chun, H.; Rajbhandari, S.; Vithanage, D.A.; Mulyawan, R.; Faulkner, G.; Haas, H.; O’Brien, D.C.; Collins, S.; Turnbull, G.A.; et al. Optical antennas for wavelength division multiplexing in visible light communications beyond the Étendue limit. Adv. Opti. Mat. 2020, 8, 1901139. [Google Scholar] [CrossRef]
- Riaz, A.; Collins, S. A wide field of view VLC receiver for smartphones. In Proceedings of the ECOC, 2020, Brussels, Belgium, 6–10 December 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Tsai, D.C.; Chang, Y.H.; Chow, C.W.; Liu, Y.; Yeh, C.H.; Peng, C.W.; Hsu, L.S. Optical camera communication (OCC) using a laser-diode coupled optical-diffusing fiber (ODF) and rolling shutter image sensor. Opt. Exp. 2022, 30, 16069–16077. [Google Scholar] [CrossRef] [PubMed]
- Mulyawan, R.; Gomez, A.; Chun, H.; Rajbhandari, S.; Manousiadis, P.P.; Vithanage, D.A.; Faulkner, G.; Turnbull, G.A.; Samuel, I.D.W.; Collins, S.; et al. A comparative study of optical concentrators for visible light communications. In Proceedings of the SPIE 10128, Broadband Access Communication Technologies XI, 101280L, San Francisco, CA, USA, 28 January 2017. [Google Scholar] [CrossRef]
- Peng, X.; Kong, L. Design and optimization of optical receiving antenna based on compound parabolic concentrator for indoor visible light communication. Opt. Comm. 2020, 464, 125447. [Google Scholar] [CrossRef]
- Arnaoutakis, G.E.; Richards, B.S. Geometrical concentration for enhanced up-conversion: A review of recent results in energy and biomedical applications. Opt. Mater. 2018, 83, 47–54. [Google Scholar] [CrossRef]
- Dong, Y.; Shi, M.; Yang, X.; Zeng, P.; Gong, J.; Zheng, S.; Zhang, M.; Liang, R.; Ou, Q.; Chi, N.; et al. Nanopatterned luminescent concentrators for visible light communications. Opt. Express 2017, 25, 21926–21934. [Google Scholar] [CrossRef] [PubMed]
- Logunov, S.; Fewkes, E.; Shustack, P.; Wagner, F. Light diffusing optical fiber for Illumination. In Proceedings of the Renewable Energy and the Environment, OSA Technical Digest, 2013, Online, 5 May 2013. Paper DT3E.4. [Google Scholar]
- Corning® Fibrance® Light-Diffusing Fiber Specification. Available online: https://www.corning.com/media/worldwide/csm/documents/Corning_Fibrance_Light_Diffusing_Fiber.pdf (accessed on 19 April 2023).
- Govind, P.A. (Ed.) Fiber-Optic Communication Systems; Wiley: New York, NY, USA, 2021. [Google Scholar]
- Acharya, R. (Ed.) Satellite Signal Propagation, Impairments and Mitigation; Academic Press: New York, NY, USA, 2017. [Google Scholar]
Year | Optical Antenna | Modulation | Data Rate | Antenna Length | FOV | Feature |
---|---|---|---|---|---|---|
2016 | Polystyrene fiber array (Saint-Gobain BCF-92) | OFDM | 2.1-Gbit/s | 3.6 × 35 cm | 59.4° | Omni-directional detection potential [36] |
2018 | Light diffusion fiber + wavelength-shift fiber (BCF-92) | OOK | 100-Mbit/s (DL) + 100-Mbit/s (UL) | 50 m (DL), 25 m (UL) | 360° | For industrial vehicles [37] |
2019 | Scintillating fiber array (Saint-Gobain BCF-10) | OOK | 250-Mbit/s | 1.2 × 30 cm | 360° | Underwater wireless optical communication [38] |
2020 | Fluorescent layer sandwiched by 2 glass layers | OOK | 12-Mbit/s | - | 60° | 2-color WDM [39] |
2020 | Fluorescent fiber (Saint-Gobain BCF-20) | OOK | 1.1-Gbit/s | 7.57 cm | 240° | For smart-phone Rx [40] |
2022 | Phosphor-coated light diffusion fiber | OOK | 3.3 kbit/s | 100 cm | 360° | OCC [41] |
This work | Light diffusion optical fiber (LDOF) | OOK | 210-Mbit/s (DL) + 850-Mbit/s (UL) | 100 cm (DL and UL) | 360° | Bidirectional + FSO capability |
Optical or Mechanical Properties | Feature |
---|---|
Diffusion Length | 1 m |
Numerical Aperture (NA) | >0.46 |
FOV Around Fiber Circumference | 360° |
FOV Along Fiber | 120° |
Operating Wavelength | 420 to 700 nm |
Core Diameter | 170 ± 3 μm |
Clading Diameter | 230 + 0/−10 μm |
Proof Test: Tensile Strength | 100 kpsi |
Operating Temperature | −20 to + 105 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.-H.; Chow, C.-W.; Lin, Y.-Z.; Jian, Y.-H.; Wang, C.-C.; Liu, Y.; Yeh, C.-H. Bi-Directional Free-Space Visible Light Communication Supporting Multiple Moveable Clients Using Light Diffusing Optical Fiber. Sensors 2023, 23, 4725. https://doi.org/10.3390/s23104725
Chang Y-H, Chow C-W, Lin Y-Z, Jian Y-H, Wang C-C, Liu Y, Yeh C-H. Bi-Directional Free-Space Visible Light Communication Supporting Multiple Moveable Clients Using Light Diffusing Optical Fiber. Sensors. 2023; 23(10):4725. https://doi.org/10.3390/s23104725
Chicago/Turabian StyleChang, Yun-Han, Chi-Wai Chow, Yuan-Zeng Lin, Yin-He Jian, Chih-Chun Wang, Yang Liu, and Chien-Hung Yeh. 2023. "Bi-Directional Free-Space Visible Light Communication Supporting Multiple Moveable Clients Using Light Diffusing Optical Fiber" Sensors 23, no. 10: 4725. https://doi.org/10.3390/s23104725
APA StyleChang, Y.-H., Chow, C.-W., Lin, Y.-Z., Jian, Y.-H., Wang, C.-C., Liu, Y., & Yeh, C.-H. (2023). Bi-Directional Free-Space Visible Light Communication Supporting Multiple Moveable Clients Using Light Diffusing Optical Fiber. Sensors, 23(10), 4725. https://doi.org/10.3390/s23104725